
Compositional Evolution of Secure Service with Aspects

CESSA
Compositional Evolution of Secure Services using Aspects

ANR project no. 09-SEGI-002-01

Survey and requirements analysis

Abstract. The CESSA industrial research project will provide solutions for the evo-
lution of secure SOAs by providing an aspect-oriented structuring and programming
model that allows security functionalities to be modularized, even if they cross ad-
ministrative and technological domains.

This deliverable offers motivation and basic requirements for the models and appli-
cations targeted within the project. It defines the basic characteristics of the service
and aspect models that are used as part of the project, describes a use case scenario
that will be implemented during the project, presents requirements for these models
derived by the industrial partners of the project using the scenario, and presents an
extensive analysis of the state-of-the-art of services and composition techniques in
academia and industry, including standards.

Deliverable No. D1.1
Task No. 1
Type Deliverable
Dissemination Public
Status Final
Version 2.1
Date 2 July 2010
Authors R. Douence, H. Grall, I. Mejı́a, J.-C. Royer, M. Südholt (EM

Nantes); M. S. Idrees, Y. Roudier (Eurecom); J. Leroux, F. Ri-
vard (IS2T); J.-C. Pazzaglia, G. Serme (SAP)

Contents

1 Introduction 4

2 Service and aspect models 6
2.1 Service model . 7

2.1.1 Overall architecture and main concepts 7
2.1.2 Collaborations . 7
2.1.3 Processes . 8
2.1.4 Services . 10
2.1.5 Glossary . 10

2.2 Aspect model . 11
2.2.1 The basic model: an extension of the pointcut-advice model 12
2.2.2 Fundamental characteristics of the CESSA aspect model 14
2.2.3 Glossary . 15

3 From use case scenarios to requirements 18
3.1 Loan negotiation scenario . 18

3.1.1 Introduction . 18
3.1.2 Assessing the loan risk using a Credit Bureau 23
3.1.3 Government aid checking . 24
3.1.4 Assessing the loan risk using an internal information 24
3.1.5 Evolution . 25

3.2 Methodology . 26
3.3 Requirements derived by the industrial partners 28

3.3.1 Large-scale business infrastructures . 28
3.3.2 Infrastructures for embedded devices 29

4 State of the Art: academic approaches 31
4.1 Service-oriented computing . 31
4.2 Interaction protocols . 32
4.3 Aspect-oriented software development . 35

4.3.1 Aspects and (web) services . 35
4.3.2 History-based aspects . 36
4.3.3 Formal semantics for and properties of aspect-based systems 37

2

4.3.4 Aspect-based evolution of protocols . 38

5 State of the Art: industrial approaches 39
5.1 The WS* stack . 39

5.1.1 Integration Layer . 40
5.1.2 Quality of Service Layer . 44
5.1.3 Discovery, Registry, and Publishing Layer 47
5.1.4 Description Layer . 48
5.1.5 Messaging and Transport Layer . 48

5.2 Alternative: Restful web services . 49
5.3 Cloud computing . 50

5.3.1 Software as a Service (SaaS) . 50
5.3.2 Platform as a Service (PaaS) . 50
5.3.3 Infrastructure as a Service (IaaS) . 50

5.4 Infrastructures and standards of the CESSA industrial partners 51
5.4.1 Challenges for service-based business applications 51
5.4.2 Business ByDesign, Netweaver . 52

6 Conclusion 56

Bibliography 57

3

Chapter 1

Introduction

Service-oriented architectures (SOAs) constitute a major architectural style for large-scale in-
frastructures and applications that are built from loosely-coupled well-separated services. SOAs
today are the major structuring principle of a multitude of commercial infrastructures and appli-
cations that consist of service compositions, in particular service orchestrations and choreogra-
phies. They may span a number of different organizations, and involve powerful servers as well
as resource-constrained devices (e.g., mobile devices).

Such applications frequently are subject to stringent security requirements, for example, in
order to protect company-internal data, avoid breaches of the right to privacy of clients, and
provide tracing information for auditing purposes to official institutions. Security properties
generally pervade software systems, in technical terms, security properties crosscut a service-
based systems: security-relevant policies and implementations depend on (and affect) large parts
of the underlying system.

Furthermore, service-based systems, notably enterprise information systems, are frequently
subject to evolution because they cannot be shut down even for short interruptions. Such evo-
lutions may, in particular, cross different administrative domains (that belong, e.g.,to different
branches of a company that use different security policies) or cross different technological do-
mains (that may support, more or less general service models).

The CESSA industrial research project will provide solutions for the evolution of secure
SOAs by providing an aspect-oriented structuring and programming model that allows security
functionalities to be modularized, even if they cross administrative and technological domains.
Overall CESSA aims at four contributions:

1. The definition and implementation of a service model that enables modeling of service
compositions within the administrative and technological domains of the CESSA partners,
notably SAP’s large-scale service infrastructures and ERP applications, and IS2T’s infras-
tructures for resource-limited embedded devices.

2. The definition and implementation of an aspect model that allows service-based systems to
be evolved flexibly by, at the same time, guaranteeing correctness properties of evolutions.

3. A security model for service-based systems, as well as corresponding analysis and en-

4

forcement mechanisms.

4. Two applications of these models: an application to a service infrastructure for ERP sys-
tems from SAP and an integration with IS2T’s customized Java VMs for embedded de-
vices.

This deliverable is the first of two deliverables (along with deliverable D2.1) that lay the
foundations for work on these results. This document offers motivation and basic requirements
for the models and applications targeted within the project. Concretely, we present the following
information.

• Chapter 2 introduces the main concepts of service-oriented computing and aspect-oriented
computing. It describes two models, for services and aspects respectively. It also defines
the terminology that will be used in the CESSA project.

• In Chapter 3, we first present a loan negotiation scenario typical for the acquisition of
loans in a business environment that involves customers, banks and credit bureaus. This
scenario will be used over the full duration of the CESSA project to motivate, illustrate and
validate the methods, techniques and tools developed as part of the project. Then, using
this scenario, we sketch requirements for the service and aspect models derived by partners
SAP and IS2T. To prepare the future developments, we also introduce a method that will
be used to formalize requirements.

• Chapters 4 and 5 present an extensive analysis of the state-of-the-art of services, com-
position techniques, especially aspect-oriented software development. This analysis en-
compasses both, academic approaches and industrial systems, including existing industrial
standards and practices.

Note that this document does not focus on any specific property of service-based systems.
Approaches to the security of service compositions, the specification and implementation of se-
curity properties, as well as their evolution are not considered here but are the subject of the de-
liverable D2.1 that is entirely dedicated to the security of services and aspects within the CESSA
project.

Finally, note that this deliverables defines the fundamental properties of the CESSA service
and aspect models, the (full) definition of the models will be provided later, notably as part of
deliverable D1.2.

5

Chapter 2

Service and aspect models

The growth of Internet has extended the scope of software applications, leading to network-
based architectures. The main characteristic of these distributed architectures is that they restrict
the communication between remote components to message passing. Service-oriented comput-
ing is a key solution to organize the exchange of messages in a network-based architecture, by
using services as primitive components. Services provide autonomous operations that can be
described, published, discovered and orchestrated using standard protocols to build networks
of collaborating applications distributed within and across organizational boundaries. There is
a strong separation between the interfaces of the service operations and their implementation:
interfaces are independent from the underlying platform used for implementing the operations.

As service technologies are advancing fast and are being extensively deployed in applications
spanning different organizations, in order to hold their promise, it becomes crucial to ensure
security and trust in security for these applications. Confidentiality, integrity, availability and
digital identity management are now required [25].

Security functionalities, such as access control and monitoring for intrusion detection, are an
example of cross-cutting functionalities. In an application, cross-cutting functionalities, which
are scattered and tangled over large parts of the application, cannot be modularized in a well-
separated module. Aspect-Oriented Software Development is an application-structuring method
that addresses in a systemic way this problem of a lack of modularization facilities for cross-
cutting functionalities. The partners of the CESSA project aim at developing solutions to secure
service-oriented computing by providing aspect-oriented methods and techniques, allowing se-
curity functionalities to be modularized.

In the following sections, we introduce service-oriented computing and aspect-oriented com-
puting. The purpose of the following sections is to provide the participants in the project CESSA
with a common conceptual model for service-oriented and aspect-oriented computing. In partic-
ular, the aims are:

• to provide a terminological background and ease the integration between CESSA partners,

• to provide the concepts that have to be considered when designing service-oriented and
aspect-oriented systems.

6

2.1 Service model
We present a model for service-oriented computing. Actually, there are two current models for
service-oriented computing, which we briefly present now.

First, interoperability and integration issues has led to the development of the technology of
“big” Web services [115], based on XML and Internet technologies. A service corresponds to a
set of operations, implemented with any technical infrastructure, declared in a specific language,
like the Web Services Description Language (WSDL), and accessed via a standard protocol like
the Simple Object Access Protocol (SOAP). Processes, corresponding to the composition of
operations, can be locally defined from an orchestration language like the Business Process Exe-
cution Language for Web Services (BPEL4WS), and globally specified with a choreography lan-
guage like the Web Services Choreography Description Language (WS-CDL). Since processes
are central in this model, we say that the model is process-oriented.

More recently, an alternative solution has been brought forward leading to RESTful web
services. Returning to the original design principles of the World Wide Web, and its REST
style [115], it proposes a form of automation: the user sending requests with a web browser then
getting responses from a server is replaced with a computing and communicating process calling
services attached to resources. Since the primitive entities are resources, we say that the model
is resource-oriented.

2.1.1 Overall architecture and main concepts
We propose a model that unifies both models, by retaining their common structure. It is based on
three layers, corresponding to collaborations, processes and services. It can be considered as an
abstraction and a simplification of the technological stack for web services described in Sect. 5.1
and represented in Fig. 5.1.

Fig. 2.1 presents the main concepts of the CESSA service model. Multiple peers can in-
terchange messages which activate collaborations between processes (represented by rounded
rectangles in the figure). Processes invoke or provide services (ovals). Services are composed
of different operations which encapsulate the access to resources. These concepts are defined in
more detail below.

2.1.2 Collaborations
A collaboration consists of a set of processes that interact with each other by exchanging mes-
sages. It can be defined as the flows of messages exchanged among the processes at a global
level. A collaboration is specified by a global protocol, called a choreography, that describes the
set of allowable interactions for the collaboration. Sessions are a common mechanism of inter-
action for a collaboration. For instance, assume two processes willing to collaborate. They first
establish a connection on a shared public channel. After agreeing on some private channel, they
commit in a conversation, following a protocol describing the sequence of messages exchanged
on the private channel. In general, a protocol does not specify a unique sequence, but a set of
allowable sequences.

7

Collaboration

p
1

p
2

p
3

mi

peer1
2peer

Op1

Op2

Op3

Provided
Service

p
4

requests

Process

Service Resource

Provided
Service

s1

s2 s3

s4

s5 p
1

s
5

Figure 2.1: Service Model

A collaboration can involve many processes, and not only two. These processes can be split
into groups, each group being controlled by a peer. Thus, a choreography can be considered as a
contract between peers: for each peer, the choreography specifies the behavior of the processes
under its control when they engage into a collaboration. Therefore, there is no centralized control.
Furthermore, note that collaborations foremost are an abstraction mechanism: they may not exist
as physical entities, in particular at execution time.

As a running example, we detail in section 3.1 a loan negotiation scenario with multiple
actors. In this scenario, there is no centralized control but the actors act and react according to
the steps of the scenario. In particular, the loan applicant and the real estate agency are more
active in the early stages of the scenario. Later, the bank and government personnel become
more active.

Technologies used for choreography are described in Sect. 5.1.1.

2.1.3 Processes
From a top-down perspective, a process can be considered as the projection of a collaboration.
Just as a choreography specifies a collaboration, a behavioral interface specifies a process: it
is a protocol defining the messages that the process can exchange during a collaboration. This
interface abstracts away from the computations and the communications inside the process.

8

From a bottom-up perspective, a process invokes services that are thus required from other
processes acting as servers and provides services that are invoked by other processes acting as
clients. It is specified as an orchestration of services, resorting to the following operations to
schedule service invocations and provisions.

• Communication

A process can invoke external services. As it also provides services, it can receive a service
request and reply to it. In other words, a process can act not only as a client but also as a
server.

• Data manipulation

Communication entails incoming and outgoing information, represented as structured data.
The process needs to manipulate these data with a dedicated language.

• Sequentiality

Processes can be organized in a sequence. The first process executes, after its termination,
the second one executes, and so on.

• Control flow operations

Standard operations allow choices between processes with conditional branches and itera-
tions of processes with loops.

• Concurrency

Processes can execute in parallel, and not only in sequence. Parallelism is efficient when
the processes can execute without interfering. When some control dependency between
processes in parallel is required, a mechanism provides the synchronizations that are needed.

• Exception handling

When a process invokes a service that is currently unavailable, an error occurs. As this kind
of errors may be frequent in a network-based context, a mechanism to detect and handle
these errors is required. When an error occurs, an exception is thrown. It can subsequently
be caught by an exception handler.

For instance, in our running example of the loan negotiation scenario, the application pro-
cessing is decomposed into two sequential phases to be performed by two different clerks. Each
phase requires concurrent operations: for instance, the post-processing clerk double checks the
credit worthiness by querying in parallel the credit bureau, the government and the internal rating
system.

The technologies used for orchestrating services are described in Sect. 5.1.1. As for data,
they are usually represented as XML documents. A language like XPATH is then used to query
documents.

9

2.1.4 Services
Services are the units processing messages. As they are distributed over the network, they are
identified by their addresses. A service is a set of operations, with input and output parameters.
Messages therefore correspond to operation calls and returns. Data exchanged are structured:
generally speaking, they represent algebraic terms, that is trees built from raw data. Addresses
can also be exchanged: hence, the service network may dynamically evolve. Given a service,
the operations can be implemented by any technology. When the implementation does not entail
further communications, we say that the operation is primitive. Otherwise, the operation is pro-
vided by some process: calling the operation corresponds to a process delegation. The process
can be defined either in an orchestration language, or in a general-purpose language like Java,
providing means to invoke and to provide services.

The most basic message is a request sent by a client to a server: it corresponds to the call of
an operation declared in the service. The restriction to this purely asynchronous communication
primitive is not a limitation since common communication modes for service invocation can be
defined using this primitive. First, a simple protocol allows operation returns to be encoded: the
request indicates as an extra input parameter the address of a service where the reply must be
sent, called the continuation. Hence operations can declare not only input parameters but also
output parameters. Then, common communication modes are easily defined.

• Asynchronous one-way invocation (most basic mode): the invocation immediately termi-
nates without expecting a reply.

• Synchronous invocation: the invocation terminates only after the server replies.

• Asynchronous invocation with future: the invocation immediately terminates without wait-
ing for the reply and the client deals with the reply when it is available via a future, the
continuation of the invocation.

For instance, in the loan negotiation example, the credit bureau provides a service requested
by the post-processing clerk in order to compute a ranking for the customer loan request.

The technology of Web services, which is the most widespread implementation of services,
is described in Sect. 5.1.4 for the WS* stack, and in Sect. 5.2 for Restful web services. WS* web
services emphasize the procedural aspect of services: a service invocation is akin to a remote
procedure call using web standards. Restful web services are resource-oriented: they use some
basic operations (CRUD operations, create, request, update, destroy) to manipulate resources.

2.1.5 Glossary
The glossary recalls the definitions of the basic concepts for service-oriented computing. The
terms are alphabetically ordered.

Behavioral interface: protocol defining an enriched interface for a process.

Choreography: specification of a collaboration with a protocol.

10

Collaboration: exchange of messages between processes.

Conversation: multi-step interaction between processes or peers having state and duration.

Message: basic unit of communication corresponding to the call or return of an operation de-
clared in a service.

Operation: computation unit declared in a service, with input and output parameters, either
primitive, or corresponding to a process delegation.

Orchestration: specification of a process.

Peer: owner of one or more processes, which are under its control.

Process: a set of execution flows invoking services and providing services.

Protocol: specification of an exchange of messages.

Service: a set of operations.

Session: an interaction between processes or peers during a collaboration, managing the setting
up and taking down of the conversation between the processes or peers involved in the
collaboration.

2.2 Aspect model
Security is a functionality of service-based systems that is very difficult to specify and implement
because it is not modular: modifications to one part of an application may interact strongly with
the security properties of other parts of the same application.

Aspect-Oriented Software Development (AOSD) [6, 90] has emerged as the domain investi-
gating and providing solutions for the systematic treatment of such non-modular functionalities.
Aspect-oriented approaches provide aspects, a new programming abstraction for the modulariza-
tion of such functionalities, see the aspect glossary (see Sec. 2.2.3). Aspects are typically defined
in terms of pointcuts, abstractions defining the contexts where modifications have to be applied,
and advices that define the modifications themselves.

While this approach, in principle, fits very well the problem of defining evolutions of the se-
curity model of service-based applications and infrastructures, services and service compositions
impose several specific characteristics on an aspect model. In the following we first present basic
properties that our aspect model should have and a set of corresponding major characteristics of
the CESSA aspect model.

Note that the CESSA aspect model will be completely defined only later as part of D1.2 after
the security properties, policies and standards that are considered as part of the project have been
fixed (the CESSA security model will be presented as part of deliverable D2.1).

However, some basic properties for aspects can already be motivated by the specification,
definition and implementation of services and their evolution.

11

• Aspects must be able to refer to and potentially modify all entities that form the CESSA
service model as defined in Sec. 2.1.

This requirement implies a number of more specific ones. As an example, one of the most
important of these subsumed requirements concerns service compositions:

• The aspect model has to support the manipulation of horizontal and vertical service com-
positions. In particular, they have to support the modifications of choreographies and or-
chestrations of services.

• Aspects must be able to define implementations of evolutions implemented using the real-
world infrastructures that are used by the industrial partners.

While evolutions should be specified, defined and implemented based on the CESSA ser-
vice model that is to be implemented by the industrial partners, the aspect model should
accommodate particularities of the target platforms that have to be taken into account for
important evolution tasks.

• Support for the evolution of service systems requires means for the precise definition of
the semantics effects of aspects and the verification of their properties.

• Aspects must be able to refer to and interact with the CESSA security model, modify in
particular security policies and properties.

As illustrated in Fig. 2.2, we have in mind a model where aspects may refer to and modify
all entities at all levels of the service model. Furthermore, aspects may act on interfaces and
implementations, as indicated in the figure only for the process abstraction.

We are now in the position to refine the above properties into concrete characteristics that the
CESSA aspect model (that will be defined as part of deliverable D1.2) must meet.

Generally, aspect models [6] come in very different forms, concerning their basic concepts
but also implementation strategies, suitability for the application of formal methods, etc. The
CESSA aspect model will be based on the most popular model, the so-called pointcut-advice
model for aspects, but requires some important extensions to be applied. In the following, the
basic pointcut-advice model for aspects is introduced and the need for extensions motivated. We
then present the main characteristics of the CESSA aspect model.

2.2.1 The basic model: an extension of the pointcut-advice model
The basic aspect model the CESSA aspect model is based on is the so-called pointcut-advice
model that has already been introduced with the first dedicated aspect models [88] and is the
basis of the most popular aspect systems, AspectJ [14, 89] and corresponding industrial models,
such as SpringAOP [128] and JBoss AOP [84].

This model is characterized by three main abstractions: aspects, pointcuts and advice (cf. the
glossary of basic aspect concepts in Sec. 2.2.3) that together provide means for the concise defi-
nition and efficient implementation of so-called crosscutting functionalities of a base application,

12

Figure 2.2: Service and Aspect Models

such as security, that cannot typically be modularized with existing structuring and encapsulation
mechanisms, such as services or components.

• Aspects constitute the abstraction enabling the modularization of crosscutting function-
alities. They contain, a minima, several bindings of pointcuts and advice but may also
contain several other declarations for the definition, e.g.,of local state and the creation of
fresh instances of aspects (i.e.,their local state).

• Pointcuts allow to define where (points in the source code of an application) or when
(events during the execution of an application) aspects should apply modifications.

Pointcuts are expressed in pointcut languages: their expressive power, their support for
automatic verification of properties, etc, may significantly vary. Poincut languages often
contain a large number of aspect-specific constructs that match specific structures of the
language in which base applications are expressed.

• Advice is used to define the modifications that an aspect may perform. Advice is often ex-
pressed in terms of some general-purpose language with a small number of aspect-specific
extensions, most notably the proceed construct that allows, in its basic form, the execu-
tion of the behavior of the base application that triggered the aspect application in the first
place.

13

2.2.2 Fundamental characteristics of the CESSA aspect model
In order to apply AOP to the evolution of services defined according to the CESSA service
model, aspects have to meet the basic properties introduced at the beginning of this section. We
address these requirements by the following set of major characteristics that the aspect model
has to fulfill. These characteristics are for most of them general in the sense that they apply to all
the three basic aspect abstractions (aspects, pointcuts and advice); characteristics that only apply
to some abstractions state this explicitly.
Characteristic: (Basic abstractions and relations) The pointcut language enables referencing
all relevant abstractions of the service model and the concrete infrastructures; the advice language
allows to manipulate these entities.

Furthermore, the pointcut language provides means to identify relevant relationships between
these entities and the advice language allows to manipulate them. 2

Concrete examples for such abstractions include collaborations, processes, services and re-
sources. Relevant relationships between them include relations between adjacent abstraction
levels or the ability to protect some of them using certain security mechanisms, such as access
control, while others may not be modified by that security mechanism.

Evolution scenarios frequently cannot be realized using traditional black-box composition
only, i.e.,by composing only interface-level entities of services or components. This is for in-
stance the case if new requirements concern properties of implementations that have not been
made explicit previously on the interface level. A concrete instance of such a requirement that is
of prime interest to partner SAP are new requirements imposed by evolving legal environments:
the introduction of the Sarbanes Oxley act in the U.S., for instance, required software editors
to meet much more stringent traceability requirements that had not been (and could not be) an-
ticipated during the interface design of existing ERP systems. The CESSA project therefore
supports a more general composition model.
Characteristic: (Composition model) The CESSA aspect model provides a gray-box compo-
sition model, i.e.,aspects may access parts of service implementations. However, such access can
be restricted by explicit fine-grained conditions on the structure and behavior of the underlying
base system. 2

The CESSA aspect model will therefore provide strong control over invasive composition.
Corresponding conditions will be defined as part of evolution tasks through the aspects that real-
ize them. The conditions may then be integrated before execution in the runtime representations
of aspects or the underlying infrastructure, or enforced, possibly at execution time, on service
implementations.

The next characteristic defines the applicability and generality of our aspect model with re-
spect to the service lifecycle (design, implementation, assembly, deployment, execution).
Characteristic: (Dynamic application) Aspects are applied dynamically. Static application
strategies may be used, however, if appropriate. 2

Many current aspect models only support static or load-time application of aspects, which
severely limits their applicability for many composition tasks. Our model therefore significantly

14

broadens the use of aspects to many real-world scenarios that involve highly dynamic service
applications.

Another general characteristic of our model is that the model enables the aspect-based defi-
nition of service evolutions whose (security) properties can be formally analyzed.
Characteristic: (Formal properties) The aspect model includes explicit means to restrict as-
pects, pointcuts and advice, such that relevant formal properties of service evolutions defined
using aspects can be specified precisely, formally analyzed and enforced on corresponding im-
plementations. 2

The following characteristic is motivated by the importance of protocols within the CESSA
project.
Characteristic: (Protocol support) The pointcut language includes direct support for matching
(parts of) protocols that govern the collaboration (choreography etc.) between entities of the
service model. The advice language permits the manipulation of protocols. 2

Local state of aspects may interfere with the behavior of the underlying base application,
which is a potential problem for security properties of service-based systems that are evolved
using aspects.
Characteristic: (Local state) Aspects may contain local state that can be used to modify state
of the base application. Aspect definitions may, however, restrict the kind of state that can be
defined and used. 2

A restriction on aspect state is crucial to a model for the evolution of security properties
of services, because unrestrained use of local state in aspects and for the modification of base
applications forbids effective analyze analysis of the formal properties, in particular security
properties, of the corresponding systems.

2.2.3 Glossary
This glossary introduces basic concepts of AOP. The terms are alphabetically ordered.

Advice: a piece of code to be executed when a pointcut matches a joinpoint. Advices can be
inserted before or after the current execution events, and may also replace a joinpoint. In
this latter case, the computation corresponding to the current execution event (e.g. a service
call) is intercepted and the original computation is never executed.

Advice of advice: a program woven with an aspect generates new joinpoints (i.e.,the events
corresponding to the advice execution, e.g.,when the advice calls services). These extra
joinpoints can be matched by another aspect. An aspect could even match its own advice
executions with the risk of infinite weaving. So, it is important to precisely define which
joinpoints can be matched by which aspects. This can be seen as vertical composition of
aspects.

Aspects: new modularization concept and corresponding program abstraction that typically de-
fines one or several pointcut-advice bindings and possibly a local state.

15

Base application: the underlying application into which aspect are woven.

Binding (of pointcuts and advice): often a joinpoint exposes values of the base program (e.g., a
parameter of a service call). These values can be bound to variables in order to parametrize
advices.

Composition or interaction (of aspects): when two pointcuts match the same joinpoint, two
pieces of advice may be executed. In this case, the advice execution order can be important
(for instance to determine whether a woven program should call a log service then abort,
or first abort and never call a log service). In general, aspect composition goes beyond the
ordering of advice. For instance, if an advice changes a color to blue and another advice to
yellow, the composition of these two advices may be another color, not only one of the two.
In other words, when the two advices call services, their execution must be orchestrated.

Concurrent aspect: in a concurrent context, the aspect-related concepts have to be adapted. For
instance, a joinpoint could carry the identity of the thread that generates it. A history-based
pointcut could match several joinpoints corresponding to a rendez-vous of processes. The
base program and the advice executions could be parallel or sequential. When the joinpoint
is a service, the corresponding advice could be executed sooner or latter according to
whether the service was synchronously or asynchronously invoked.

Distributed aspects: distributed applications require extension to the standard concepts of AOP.
For instance, a joinpoint could carry the identity of the host that generates it. A history-
base pointcut could inspect a remote-call stack distributed across several hosts. A joinpoint
could be matched based on host information and the corresponding advice could be exe-
cuted remotely on several different hosts.

History-based pointcuts: a pointcut can select individual execution events, but it may also in-
spect the history of the computation that led to the current event. For instance, AspectJ pro-
vides pointcuts operators that inspect the call stack, and event-based AOP enables pointcuts
that inspect the full execution trace.

Instantiation (of aspects): an aspect consists of at least one pointcut and its associated advice.
The advice is executed each time a joinpoint is matched by the pointcut to which the
advice is bound. An advice can thus be executed several times, and an aspect can have a
local persistent state. For instance, a profiling aspect can declare an integer variable and
the advice can increment it in order to count a particular kind of joinpoints. History-based
aspects can also use a local persistent state. e.g.,to match a sequence of joinpoints. As soon
as an aspect is stateful, aspects may be instantiated, i.e.,different instances of the same
aspects with different (fresh) local states may be created. For instance, AspectJ propose to
instantiate an aspect either once per virtual machine, once for each loaded class, once per
object created or once per method called. It might be useful to instantiate an aspect each
time a new service is discovered, or each time it is invoked, or each time and orchestration
of services comes to an end.

16

Joinpoints: an execution event that an aspect can monitor and react to. In the context of CESSA
a service invocation could naturally be a joinpoint.

Pointcuts: pointcuts denote joinpoints. Pointcuts can often be seen as matching individual or
sets of joinpoints.

Properties (of correctness, security . . . :) in general an aspect can arbitrarily modify the se-
mantics of the base program (for instance, it can replace the execution of main by its
advice, or the credit service invocation could be replaced by the debit service invoca-
tion). Support for property verification and analysis is often provided by aspects that make
explicit more information on the contexts in which they are applied, e.g.,history-based
aspects.

Weaver: a compiler or interpreter that translates a base application and one or several aspects in
an executable application.

17

Chapter 3

From use case scenarios to requirements

In this chapter, we detail a running use case: a loan negotiation scenario. Then we give some
informal requirements drawn from the scenario and derived by the industrial partners SAP and
IS2T. Generally speaking, the CESSA project first aims at providing conceptual solutions and at
developing proofs of concepts, followed by an application and integration phase by the industrial
partners. We can therefore distinguish two stages, the development of the solutions and the
development of the applications using the solutions. More precisely, we will define a service
and aspect infrastructure and will use the infrastructure in use cases (the major of which, a
loan negotiation scenario, is presented in this deliverable), leading to a proof of concept. In
the development process of the infrastructure and the use case, we will provide requirements
that will be more complete and more formal than the requirements given in this first deliverable.
That is the reason why we have also chosen to introduce a methodology that aims at easing the
completion and the formalization of the requirements.

The chapter is organized as follows: the first section introduces the loan negotiation use case
scenario, the second introduces the methodology, and the third one gives a first set of require-
ments derived from the use case and systems of the industrial partners.

3.1 Loan negotiation scenario
To represent the flexibility of CESSA and its advantages, we present a scenario that involves
many actors in a distributed environment. After introducing the context and presenting the pro-
cess of a loan origination workflow, we highlight the benefits of the CESSA platform describing
what kind of evolution should be brought by CESSA.

During the project CESSA, we will build using this scenario a concrete use case, thereby
providing a proof-of-concept prototype.

3.1.1 Introduction
John is a single man 25 years old. Recently, he was appointed as a teacher in a primary school
on a permanent contract. His gross salary is about 25,000 euros per year. Before getting this job

18

John was a student and he was living at his parents’ house. Though he gets well with his parents,
he realizes it is time to move forward and to obtain his own independence. He contacts a real
estate agency in order to find a house according to his needs. After few visits, John finds a flat
which is a good deal. Despite the fact that affording this expense will require some efforts, John
decides to go for it. Since he was a child John is saving money on a bank deposit account opened
by his parents at the BBB bank. At the moment, John’s account exhibits a positive balance of
10,000 euros.

The two figures 3.1 and 3.2 represent respectively the initial state of the workflow to request
a loan, then the workflow modified by the CESSA platform. In the following section, we’ll
describe in detail the final workflow, where John request of loan through his mobile phone and is
able to contact many organizations. But the real interest is to understand what kind of evolution
is brought by CESSA to ensure security properties from initial workflow to the advanced one
and keeping in account additional organizations and type of devices. We’ll discuss about it in
Section 3.1.5.

Actors from this scenario are :

• John The customer who request for a loan

• The real estate agency John signs a ”promise of sale” with an agency

• The BBB Bank

– Peter The bank pre-processing clerk who verifies early documents

– Gabriel The bank post-processing clerk who launches internal processes

– Ted Gabriel’s manager

• Government Entity which provide financial aid

19

Figure 3.1: Initial Loan Origination Workflow

20

Figure 3.2: Evolution of the Loan Origination Workflow

21

Scene 1 John signs a ”promise of sale”

In the real estate agency, John is convinced he wants to buy the flat he is visiting, he
wants to sign a ”promise of sale” to take the exclusivity. As he knows, there is a limited
time frame once he signed the paper to gather documents in order to fulfill the contract.
His bank, aware of this kind of regulation, provides a mobile application to accelerate
the process. It’s a trusted application issued from the bank, optimized to this specific
usage and John use one of the first release. This kind of application is known as ”Mobile
banking” and as it is run in restricted device, lot of limitation apply [36]. The state
agency also owns an embedded device to interact with both John and the Bank. This
application is able to request and send early documents such as, ”promise of sale”, loan
application form etc. to the bank in order to prepare the first estimation and schedule
an appointment. John provides the authorization by means of an electronic signature
which will allows bank to retrieve or verify John personal information.

Also, in regards of his profile, John is eligible to government aids. First of all, he uses
his mobile device to ask which amount he can get from the government, for how long
and with which condition, then he advises the bank he asked for aid.

Scene 2 Bank verifies John’s request

At the BBB bank, Peter (the bank pre-processing clerk) checks the Customer Informa-
tion File sent by the mobile application during the initial phase. Peter processes John’s
confidential data. The history of John’s bank account is definitely regular. Moreover
John has been a BBB’s customer for a long time and his parents too. In addition to this
good saving profile, the most important credential for John relies in the permanent and
stable job position he has recently obtained within a public administration.

As a positive point, John also claims he is eligible to government aid for a certain
amount. As it is not Peter’s role to verify this information, Peter checks the consistency
of the case and agrees government will provide support. He also verifies he got all
documents needed for the next phase, included the digital signature which certify John
allows that personal information and payment behavior may be accessed from and sup-
plied to third parties for risk management purposes. In conclusion, Peter’s feedback on
John’s credentials is extremely positive at this stage. As required by CESSA these com-
ments are opportunely signed by Peter and reported in both the Customer Information
File and the process log. The loan origination process can move to the next phase.

Scene 3 The bank double checks the credit worthiness of John

The post processing clerk is responsible to double check the credit worthiness of John
by means of a careful analysis of a more comprehensive risk analysis involving a larger
set of data including sums of liabilities, sums of assets, third-party loans, reasons for
rating, etc. It must be noted that the majority of this data are collected and maintained
by different institutions than BBB. As stated above john will authorize the bank to
verify his data. The access to this information is regulated by appropriate collaborative
services. These services behave accordingly to precise security policies defined and

22

enforced by the CESSA framework through an authorization infrastructure that relies
on pre-existing trust relationships between the data owner and the BBB bank.

In selecting the post-processing clerk the CESSA framework arises a separation of duty
requirement imposing a mutual exclusion constraint on the tasks of pre and post pro-
cessing. In our specific case, this results in preventing Peter to be involved in the post
processing phase. Gabriel is chosen for this task and due to the fact that the amount
of the loan inquired by John does not exceeds 1 million Euros, Gabriel’s adviser is not
required to intercede. Gabriel proceeds in the post-processing phase by querying, in
parallel :

• the credit bureau in order to have ranking for john loan request (see section 3.1.2)

• the government in order to verify aid for john loan request (see section 3.1.3)

• the internal rating system (see section 3.1.4)

3.1.2 Assessing the loan risk using a Credit Bureau
The Credit Bureau is a third party business partner of financial institution that processes, stores
and safeguards credit information of physical individual and industrial companies. Credit Bu-
reaux gather data from various sources and cross-check and match the data for accuracy. Some of
these sources include publicly available records (Courts and Deeds Offices) and Credit account
details (from Credit Grantors or subscribers). Credit Grantors are companies such as banks, re-
tailers and any other organization that needs to manage their risk when extending credit to the
public. They are also called ’subscribers’ because they subscribe to the Credit Bureau in order
to collect, submit, use and share the information held in the database libraries. They use the
information from the Credit Bureau to make decisions on whether or not to grant credit, in terms
of their own credit granting policies. It basically performs three tasks: it gathers data from var-
ious sources (mainly banks and credit institutes), it cross-checks these data, it sells on demand
this data to its clients to allow them for checking the credit worthiness of their customers. Of
course all these tasks required a formal and signed authorization from the customer for treating
his data [1].

All the credit Bureau institutes must comply with national legislation such as the national
transcription of the European Directive 95/46/EC on the protection of individuals with regard to
the processing of personal data and on the free movement of such data. They may also adopt a
code of conduct for ensuring the well functioning of the credit information industry in terms of
maintaining proper mechanisms to ensure data processing and safety, ensuring high data safety
standards to avoid the costs and consequences of loss of data or unauthorized access, and moni-
toring/auditing their systems regularly.

The role of the CESSA framework in the interaction between the BBB bank and the Credit
Bureau is manifold: it offers mechanisms for guarantying the compliance of the Credit Bureau
to the regulation and code of conduct, it ensures a secure inter-operation of the services running
on the bank side and on the Credit Bureau side, it protects the privacy of the data exchanged, it
takes care of managing and checking all the customer authorizations, and (for auditing purposes)

23

it keeps a record of all the operations performed. The Credit Bureau must especially balance
the rights of the Credit Grantors to access detailed information on past credit behavior with the
rights of Credit Receivers not to be prejudiced by out-of-date data. The CESSA framework may
therefore provides schemes to insure the respect of obligations such as maximal specific data
retention (for example 3 years for Account performance), to insure that only factual data are
stored (excluding racial or rumors), and to grant the right for opting out.

In the case of John, the Credit Bureau does not return any negative information and Gabriel
moves to query the internal rating application.

3.1.3 Government aid checking
In his loan request, John asks for governmental aid, and provide information on what he is
suppose to get. As for the estimation the bank needs to be certain of what John will get, the bank
contacts the government to verify that a process has been launched and to certify they’ll support
part of the loan with conditions.

In parallel of Credit Bureau assessment process, Gabriel launches the government aid certi-
fication process. For John’s loan request, the government certifies John will receive a no interest
loan up to 30% of the loan with a 20 years delay to reimburse it, and with maximal aid of 32
500 euros. The government also specifies conditions John should comply with. For example, the
government aid is only for people who ask their first real estate loan, with limited resources. In
order to get this money, the bank have to contact the government back when John will sign the
loan.

At this stage, the bank is able to determine how the government will support John for his loan,
thus evaluate the risk. If John isn’t eligible to any aid, it’s not a point of failure in the process. It
only means there is less guarantees for this specific request, and the global ranking system may
be less favorable.

The government has enough reputation to guarantee he will give aid to the bank once the loan
has been accepted, but the bank still need electronic evidences. A certificate should provide non
repudiation for example. The CESSA platform will help adding such technology.

3.1.4 Assessing the loan risk using an internal information
The CESSA framework assumes the control of this internal interaction for what concerns the
security aspects (e.g., the data exchanged must be kept confidential, authorization policies need
to be considered for accessing to John private data, etc).

The internal scoring application assigns a low risk level for John’s application and, once
Gabriel has stored this information, the loan origination process move to the third phase. In the
circumstance of a negative scoring result, the application would have enforced the completion of
the request assessment to Gabriel’s manager.

Scene 4 The bank calculates the price for the bundled product (loan)

24

At this stage, the post processing is finished. It is now time to propose a bundle solution
to John. It could be the first time John physically goes to the bank as everything before
was done through electronic communication.

Gabriel has to choose the most appropriate bundled product for John in the database
products. He queries the Pricing Engine service to compute a price for the bundled
product (notice that this query does not need the real identity of the customer to be exe-
cuted). The result in terms of, e.g., original price, customer segment special conditions,
customer company special conditions, asset limit for price, is then returned to Gabriel
and proposed to John.

In doing these operations the CESSA framework (i) ensures the provision and treatment
of anonymous data on the side of the pricing engine service, (ii) protects the commu-
nication between the inquiring service used by Gabriel and the Pricing Engine service
to preserve the integrity of the data, and (iii) provides appropriate log mechanisms to
guarantee the transparency of the price calculation process.

Scene 5 The bank and John sign the form

John is now introduced to Ted, a manager of the BBB bank, to discuss the bundled
product in more details and to finalize the process. After some negotiations, John and
Ted finally come to an agreement on the loan conditions. The contract is digitally signed
using the respective secure signature creation device (SSCD) of John and Ted. A copy
of the contract is printed for John’s documentation. In doing this the CESSA framework
exploits an appropriate security protocol to enforce the non-repudiation of the signature,
it should also ensure that an adequate certification authority and a time-stamping system
are used during the signature process.

The contract is signed; Ted updates the BBB information system with the remaining
data and provides to John a formal document stating that the amount of the loan will be
transferred on John’s bank account in one week (at most).

3.1.5 Evolution
One of the main advantage of CESSA is to provide tools to make evolve an application while
ensuring secure property preservation. As state above, the two figures 3.1 and 3.2 represent re-
spectively the initial state of the workflow and the evolved one modified by the CESSA platform.

On this scenario, the loan origination process is modified to take in account new possibilities.
First of all, two new actors are involved namely a Real Estate Agency whose role is to facilitate
procedures for a customer. The state agency may have agreement with some banks, and is able to
initiate a loan process. The second new actor is the National Government which provide financial
aid to customer depending on specific conditions.

The bank has to reconfigure its internal process to accept loan origination from a state agency,
and should communicate with the government to acknowledge that part of a loan for a customer is
covered by it. CESSA needs to allow this flexibility : reconfigure part of the process to integrate
new organizations, with specific security policies and constraints.

25

One last thing, is the ability to integrate various devices, such as a mobile phone or embedded
devices. They are used to accelerate the time to process a file, and thus reduce the response for
the loan request. On the example of resource constraint devices, CESSA should provide a way to
address constraints and express correct security preservation (e.g.,encryption on mobile device
is resource and power consuming, but necessary for signature exchange. Thus CESSA shall
provide an encryption scheme that balance the strength and the consumption).

3.2 Methodology
Before giving requirements, we describe the method that we will follow to formalize the re-
quirements in our future developments. We consider the two stages, infrastructure development
and application development. For each stage, the development process involves different roles,
different kinds of requirements and different abstraction levels.

First, we have identified four main roles.

Specifier The specifier defines the properties that an artifact must satisfy. These properties ex-
press requirements in specification languages, which can be more or less formal.

Developer Given a specification, the developer implements an artifact conforming to the speci-
fication, tests it, then deploys it and finally maintains it. Actually, the development phase
involves different sub-roles, corresponding to the development cycle, from implementation
to maintenance.

Verifier Given a specification and an implementation, the verifier checks their conformance.
Verification can lead to certification: a certificate asserts the conformance with some level
of trust, which is no more implicit. Verification involves verification languages, allowing
conformance relations to be formalized and measured, leading to a dependability evalua-
tion.

User The user manipulates the artifact developed in order to complete the needs that has been
captured into the requirements. The user can estimate the trust in the completion by resort-
ing to certificates.

These roles, except the verifier role, are standard, as they follow the standard development pro-
cess. We introduce the verifier role to fulfill the objective advertised by the project CESSA,
namely improving trust in service-oriented infrastructures.

Two main kinds of requirements will be considered.

Functional requirements Functional requirements define functions to be implemented. A func-
tion is described with its inputs, its outputs and its behavior, defining computations and
communications to be provided.

Non-functional requirements Non-functional requirements specify global properties for the
behavior of the whole artifact, in addition to the functional requirements, dedicated to

26

functions composing the artifact. These properties corresponding to constraints can be
split into two main categories: execution properties, like safety and security, and evolution
properties, like maintainability and extensibility.

Each role and each requirement can be described at different abstraction levels, which need
to be related in a refinement process.

Abstraction levels Abstraction is a way to analyze an artifact by changing the level of detail to
be considered, and thus allowing information that is not relevant to be forgotten. An arti-
fact can be considered at different abstraction levels, each one corresponding to a specific
analysis.

Refinement Refinement is the relation between two abstraction levels, the former abstract, the
latter more concrete. While the structures at the different levels may significantly differ,
the behaviors and the constraints are generally preserved.

In the following, in the description of the requirements, we will adopt the preceding classi-
fication. First, two classes of requirements will be introduced, the former for the technological
solutions, the latter for the proofs of concept. Second, for each requirement, we will determine:

• its nature: functional or non-functional,

• its features, taking the different roles successively,

• its abstraction level.

For instance, suppose we have to describe a simple functionality, represented by a function.
At the proof of concept level, we define the following requirements, according to the different
points of view.

• Specifier’s point of view: definition of the function with a precondition and a postcondition
in some Hoare logic [120, chap. 3]

• Developer’s point of view: possibility for the function to be implemented in a language
allowing contracts to be defined

• Verifier’s point of view: possibility for the precondition and the postcondition to be checked
by a tool

• User’s point of view: documentation of the function integrating the definition of the pre-
condition and the postcondition

At the technological level, we need to define the logic used and the associated tools.

• Specifier’s point of view: definition of some Hoare logic allowing preconditions and post-
conditions to be expressed

27

• Developer’s point of view: implementation of a contract layer in some given language, à
la Eiffel [100, chap. 11]

• Verifier’s point of view: formal verification that the contract layer allows preconditions
and postcondition to be checked

• User’s point of view: use of a human-oriented logic for expressing preconditions and post-
conditions

For the preceding requirements, we can consider that they deal with the same abstraction level,
corresponding to the programming language used.

To conclude the methodological section, we mention that will adhere for expressing re-
quirements to the convention described in the document RFC 21191, published by the Inter-
net Engineering Task Force (IETF). This document gives the precise meaning of several words
used to signify requirements in a specification, like ”MUST”, ”MUST NOT”, ”REQUIRED”,
”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”,
and ”OPTIONAL”.

3.3 Requirements derived by the industrial partners
This sections intends to give some requirements derived from different sources. Some require-
ments are driven by the use case, thus involve actors from this scenario, while others are driven
by the underlying infrastructure. Also, we can specify requirements for two kinds of models :
the service model (2.1) and the aspect model (2.2).

3.3.1 Large-scale business infrastructures
Requirement: (Migration scheme) CESSA allows the evolution of an application while pre-
serving security properties. A business process is a flow of tasks and services that are chained to-
gether, and there can be many ”instances” at different stages already launched. The question with
an evolution is how to know which instances at a specific stage can switch to the new business
process. We certainly need a migration scheme whenever possible, and a version management
in order to avoid breaking the application. 2

Requirement: (Standards) CESSA shall use distributed and cross-organizational deployment
standards supported by the industry to be well integrated with all solutions (like SAP’s NetWeaver).

2

Requirement: (Collaboration) CESSA should be able to operate among many different busi-
ness entities at the same time. 2

Requirement: (Policy consistency) CESSA should take into account local policy in each entity
to avoid incompatibility while performing an evolution. 2

1See http://tools.ietf.org/html/rfc2119.

28

http://tools.ietf.org/html/rfc2119

Requirement: (Tools for evolution) The CESSA platform should provide tools to ease evolu-
tion. For instance, at each stage, it should display the current state, highlight steps where security
properties stands and give a list of corresponding possible changes. 2

Requirement: (Infrastructure dependencies) The set of non-functional properties available
depends on the infrastructure. It means that the specifier and developer have to know what is the
underlying infrastructure to know what is available. Likewise, some non-functional properties
may have restrictions depending on the infrastructure. It means that to cover all platforms, dif-
ferent implementations of the same aspect exist. This will happen for example when you want to
do encryption. A resource-constrained device will have a subset of capacities of other platforms
in other platforms. 2

Requirement: (Security properties) CESSA will focus on a limited set of security properties
(non repudiation, separation of duty, monitoring, access control, etc.). The complete list will be
provided - with details - in the deliverable 2.1. 2

Requirement: (Dynamic evolution) An evolution should involve a dynamic reconfiguration
without service interruption. 2

The following requirements are driven by the loan negotiation use case (3.1). We are describ-
ing few examples of the service model and the aspect model applied to the use case.
Requirement: (Separation of Duty) The scenario requires a separation of duty at the bank, to
avoid that one employee bypass the four-eyes principle. 2

Requirement: (Peer trust) A trust should already be established between the Bank and the
other actors (Real estate agency, government, credit bureau). 2

Requirement: (Peer agreement) An evolution involving more than one peers should imply an
agreement between peers. 2

Requirement: (Monitoring) The CESSA platform should enforce monitoring to raise an alert
in case of bad behavior. For instance, the pre-processing clerk has limited access to the customer
file. 2

3.3.2 Infrastructures for embedded devices
Partner IS2T contributes several requirements specific to their hardware and software environ-
ment that should (also) be targeted by the CESSA project.
Requirement: (Target devices) Support a representative high volume production product, like
an Embedded Artists’ LPC2478 board that is based on NXP ARM7 microcontroller. Other de-
vices, such as a more powerful CPU like an ARM9, are acceptable devices if they meet stringent
price limits. 2

Requirement: (Communication) Hardware devices have to support communication connec-
tions, e.g.,for database access, via a link (ethernet probably). Furthermore, suitable communi-
cation protocols with other infrastructures (e.g.,by SAP) need to be available along with corre-
sponding system integrity properties. 2

Requirement: (OSGi Me) CESSA should support OSG Me as a target platform. 2

29

Embedded software is not just “software on small machines.” Embedding applications usu-
ally is about optimizations that strive to create a software specific for some hardware. System
integration is one of the most important aspects in this context and heavily impacts testing and
debugging. This is a big difference between PC-based systems and embedded systems. For PC-
based systems, the development machine is the machine that will execute the application (or a
fairly similar machine). For embedded systems, there are actually two systems: one used to de-
sign the application (a PC-like desktop) and one to run the application (the device). As OSGi-R4
brings benefits in terms of software architecture for PC-like systems, OSGi ME brings as much
benefits to the embedded world. The philosophy of OSGi ME may be summarized by: “A faulty
service cannot cause the failure of the entire platform.”

OSGi ME distinguishes bundle designers from application designers. The first ones provide
services while the second ones make use of the registered services. This is very much in sync
with the CESSA role model (Specifier, Developer, User, Verifier). The emphasis is on the fact
that while the bundle designer constructs a bundle with its set of services, he does not control the
life cycle of the services his bundle provides: this is at the discretion of the application designer.
Moreover, there may be several application designers that make use of services, possibly unreg-
istering old services and registering news ones during the whole live cycle of the device that runs
the OSGi ME framework.
Requirement: (Security support) Devices should provide (either in hardware or software)
basic support for security, a minima, for authentication. 2

Appropriate mechanisms range from specific hardware support to full software solution like
the NTX software solution. A software solution allows to get rid off hardware which lowers the
device prices and allows for a potentially much larger diffusion if integrated in a Java application
platform.
Requirement: (REST) The CESSA access model to services must support the REST web server
protocol (because of its low resource requirements). 2

Requirement: (Device AOP) The aspect model should enable fine-granular access at the device
level, probably at the level of individual bytecodes. Aspects have to be written in Java, or at least
have a binary representation in a Java classfile. 2

Requirement: (Device migration scheme) One of the main issues with migration is about
collaborations of processes that may share some global resources. Migration must have a well-
defined semantics in order to allow for a stable system that must never become inconsistent.

The migration scheme should be transactional in order to maintain the system in a consistent
state after a migration (either the migration has succeeded, either it had no effect). 2

This is a refinement of Req. 3.3.1.
Requirement: (Transactional VM) Provide transactional support on the VM level. 2

Interactions between transactional context in the JAVA world and the transactional context
in SAP databases should be made explicit in order to maintain the transactional context during
a whole transaction call from Java down-to a single database atomic operation. This will ease
guaranteeing the liveness of the transactional context during a full context of execution, even if
it crosses platform and languages barriers.

30

Chapter 4

State of the Art: academic approaches

In this chapter, we mainly deal with academic approaches to service-oriented computing and
aspect-oriented computing. We have also found useful to describe related work around inter-
action protocols, a notion used not only in service-oriented computing, but also in component-
oriented computing.

4.1 Service-oriented computing
Web services appear under two different flavors: Web services and semantic web services. The
latter is an extension of web services with more semantic information about services, and op-
erations. This information is required to automatic services discovery and to enable automatic
and dynamic composition (at run-time) of services. However, they are only few proposals for
semantic web services and dynamic composition [33]. The static composition (at design time)
of web services is possible in two manners called orchestration and choreography.

Orchestration defines the local view of service interactions while choreography addresses a
global view of these interactions. The orchestration describes the interactions from one service
to other services it is linked. An orchestration makes explicit a central coordinator which is
responsible for invoking and combining the web-services realizing the composition.

A choreography do not assume a central coordinator, it defines the collaboration as the set
of messages and the interaction rules between the services. Choreography, contrary to orches-
tration, describes a global view of the observable behavior (message exchanges) between all the
services involved in the composition. This distinction between orchestration and choreography
could seem subtle, [65] states they should both merge in the future. The expectation is that a
choreography could describe the external visible behavior of a service while an orchestration
could define how the involved services are cooperating to realize the service composition. It
is a common practice in formal protocols which distinguishes between a protocol description
and its observational behavior and usually the formal languages are not the same. BEPL4WS
is an orchestration language while WS-CDL is a choreography language. Following the survey
in [33], from a tool support point of view, most of the commercially existing approaches are ded-
icated to BEPL4WS. A more in depth analysis and comparison of existing platforms for service

31

composition was done in [66].
RESTful services [121] has gained widespread acceptance in the Web community as a sim-

pler alternative to SOAP and WSDL based services. Regarding the specification of the workflow
process or service protocol, the situation for RESTFul web services seems much simpler than
SOAP based web services. A comparison of the SOAP and REST standard is available in [138]
as well as discussion about standard and workflow proposals. As far as we know, there is no
adopted standard to describe protocols, workflow, or composition of RESTful services. However,
there are still some academic proposals like the extension of BEPL for REST services [114].

They are already various attempts to provide formal models for protocol services and to de-
fine their composition. One first piece of information is the survey of Beeker et al. [129]. Quoting
this paper: “Neither of the industrial approaches offer any direct support for the verification of
service composition at design time”. However, they are many attempts to formally specify and
analyze the behavior of BEPL. The above paper collects approaches to formally describe orches-
tration and choreography. They are using mainly state machines (timed automata, Petri nets) or
process algebras like CCS, the π-calculus and LOTOS. The authors note that process algebras
like the π-calculus and LOTOS are better due to the need of a value passing mechanism. An-
other survey is [118] which explores automatic service composition using workflow techniques
or artificial intelligence planning. The latter is often used to automatically generate the process
model in case of automated composition.

Various calculi for web services exist focusing on different features (distribution, session,
choreography, orchestration, etc) and targeting different goals (formal specification, verification,
formal properties expression, etc). Behavioral types, type and effect systems, have been used to
check security properties in [21]. The use of spatial logic to express, in addition to behavioral
properties, resource usage and ownership is presented in [37]. [27] introduces a service calculus,
it is a process calculus making explicit notions of service definition, service invocation and ses-
sion handling. Session types provide a programming style for structured interaction, and static
checking for the composition of service protocols [137]. The work of [94] proposes a calculus
for service-based systems, suitable to describe both orchestration and the conversation. This
paper presents two equivalent semantics as well as an illustration of a static type analysis, bisim-
ulation and deadlock-avoidance. [132] is a calculus addressing distribution, process delegation,
communication and loose coupling. It is based on a fragment of the π-calculus and ensures the
congruence of bisimulation.

4.2 Interaction protocols
Service-oriented computing is a new technology which promotes the decomposition of software
applications into a set of collaborating services. Services are atomic elements to build applica-
tions and support a loosely coupling. A service can be viewed as a component: An independent
unit of computation exporting its interfaces. But in addition services are published in repositories
which can be browsed for service discovery.

32

Notions of protocols In order to successfully interact, entities (objects, agents, components,
services, etc) need to conform to a certain form of contract. Interaction protocols, generally,
describe the entity behavior in terms of allowed message sequences that must be exchanged with
other entities in order to perform the system intended global behavior. A protocol is a language
dedicated to the description of interactions, controls, and communications between several en-
tities. These formalisms can be extended to describe the synchronizations, collaborations and
possible data exchanges between several partners in a composite system. They are often used
to check for some important properties like safety or liveness of the compound system but also
to predict the performance or bottlenecks in a complex assembly. Of course, a first variation
is the language to describe entities (objects, agents, components, services, ...) and the context
(distribution, mobility, network dynamicity, real-time, ...). There are various ways to describe
these protocols, we classify them below.

State machine This is surely the most important family and the most used to describe protocols.
Basically it consists in states and transitions between these states [12]. Transitions as
well as states can be decorated. Generally, transitions are completed with label events,
variables, guards and emission/receipts, among others. One of the simplest instance is
the Labeled Transition System (or LTS) which is a graph of states and transitions where
labels of transition denote events to go from one state to the next. There are used for the
specification and verification of many dynamic systems. Many extensions of this exist, the
statechart of UML is one of the most complex, timed automata [10], symbolic transition
systems [38, 79, 98], counter automata [81], communicating machines [30] and so on.
Concurrency is generally modeled using specific construction like the synchronous product
of automatas.

Another important sub-family is Petri Nets [105] where concurrency is directly embed-
ded in the state machine. They are many variants of these machines with very different
properties in term of expressiveness and verification [63, 64, 112, 125, 72].

Process Algebra The term process algebra refers to a family of specification techniques well
suited to describe concurrent and communicating systems. Process algebras describe the
process interactions in terms of calculus based on few primitives like choice, sequence, or
parallel composition of processes. Processes are defined as assembly of atomic actions and
other processes using the composition operators of the language. There are many process
algebra formalisms, the most important ones are CCS [103, 104] and CSP [80] as they
stand at the base of other algebras like the π-calculus [102] and the mobile agents [39],
integrating primitives for the expression of distribution and mobility. Many variants of
these calculus exist, one example is LOTOS [26, 83] which is a process algebra approach
completed with an algebraic specification data language and normalized as an ISO standard
for telecommunications. But many others exist introducing time or stochastic behavior.

Behavioral types model abstractly and precisely the intended behavior of a system, they
are particular process algebra formalisms. O. Nierstrasz in [108] proposes regular types
for active objects and an associated notion of substituability.

33

Modal logic Modal logic is a family of formal logic based on modalities qualifying generally
the time but it can be some other domains. The logic extends some classic logics with new
operators, for instance the ALWAYS or UNTIL operators. One familiar modal logic is linear
temporal logic, more advanced logics are CTL and CTL* which allow branching time,
thus to reason on more than one time line [67]. An alternative is the µ-calculus which is an
extension of the propositional calculus with an explicit least fix point operator [91, 119].

Coordination Language In comparison with more usual languages in which the interaction part
of compositions (i.e.,communication, synchronization) is embedded within the computa-
tion part, coordination languages [113] promote separation of concerns hence the definition
of interaction as a first-class entity, described separately from computation. Coordination
languages are split in two categories. Data driven languages propose expressive but low
level communication mechanisms based on shared data spaces, such as Linda tuple spaces
and their Java implementation, javaspaces. On the contrary, event driven languages such
as Reo promote more abstract coordination patterns based on events corresponding to the
coordinated entities input and output ports.

These various means have differences regarding their user readability, expressiveness, effective-
ness of the verification methods, and existing tool supports. State machine is surely the family
widely used by engineers, while process algebras or temporal logics are often preferred for the-
oretical analyzes.

Protocols for components There are numerous approaches which discuss protocols and com-
ponent programming [9, 96, 97, 13, 55, 24, 16, 73, 92, 122, 18, 98, 78, 85, 31, 23, 28, 19, 22,
34, 117, 116, 35, 11, 15, 76, 77, 40, 70, 69]. Components introduce some constraints on the use
of protocols. Component-based software engineering (CBSE) relies on defining primitive and
composite components with provided and required interfaces. Communications can be based on
direct bindings or the use of connectors. In the context of services only binary connections are
relevant, for proposals considering richer connections see [22, 69]. With binary messages, the
binding mechanism is rather simple, since a port is, either connected or not connected, and either
hidden or visible outside the current scope.

We will here refer to component types rather than component instances. We can note that the
formalism used at the level of a primitive component may be different from the one of the com-
posite levels. For instance, WRIGHT uses process algebras everywhere, while Korrigan defines
primitive components with state-machines and a modal logic at the composite level. Both prim-
itive and composite component types declare their externally visible events. The notion of hier-
archy is related to the visibility of events outside the context of a composite. Inside the context
of a composite, only visible events of contained components (those that appear in their interface)
can be synchronized. Events can be hidden or exported outside a component context depending
on the type of the event exportation. A hierarchy allows some internal events (made visible by
contained components) to be hidden for outside of the current hierarchical level (composite con-
text) while exported events may be synchronized. The protocol language at the composite level
is often called a glue language. To get more flexible interactions it is important to pay attention

34

to the design of this language. To improve components and protocols reusability, partners of
communications should be defined at the glue level only. For instance, in Korrigan, the partners
of a communication are defined in the composite which assembles the communicating compo-
nents. Thus there is nothing in the protocol of one component denoting a communication with a
precise partner.

Finally, both services and components shared common features and common issues. They
are both based on primitive elements (primitive component, primitive service) and allow hierar-
chies of elements (composite component, process, business service). They are both specifying
required and provided interfaces and using a notion of scope. They are also proposing various
synchronous and asynchronous communication modes. However, they are still some important
differences, for instance CBSE consider interaction with two or more partners while web ser-
vices rely on point-to-point communications. Services consider transactions and resources as
important aspects to deal with, this is generally not covered by component languages.

4.3 Aspect-oriented software development
Modularity is a key concept of software development. When a piece of software gets big and
complex, it gets difficult to design the right architecture: an architecture that enables to program
each concern modularly. Aspect-Oriented Software Development [88] aims at providing support
for a better separation of concerns in such a system. In the following, we discuss four sets of
related work:

• Aspects for the definition and evolution of (web) services

• History-based aspects

• Formal semantics and properties for aspect-based systems

• Aspects for the evolution of protocols

4.3.1 Aspects and (web) services
Four kinds of related work are presented in the following: approaches using AOP in the context
of de/centralized web service composition, distributed web service composition infrastructures,
and approaches for AOP in distributed systems.

AOP and decentralized web service composition. There are only very few approaches ap-
plying AO techniques to distributed web service composition. A notable exception is Aspect-
Sensitive Services (CASS) [52], which provides a distributed aspect platform that targets the
encapsulation of coordination, activity life-cycle and context propagation concerns in service-
oriented environments.

35

AOP and centralized web service composition. Some more recent AOP approaches are ex-
plicitly targeted at Web services. With Padus [29] and Ao4BPEL [42], aspects can be (un)plugged
into BPEL composition processes. Since BPEL processes consist of a set of activities, joinpoints
in Padus and AO4BPEL are well-defined points in the execution of the processes: each BPEL
activity is a possible joinpoint. The attributes of a business process or certain activity can be
used as predicates to choose relevant joinpoints. BPEL, Padus and AO4BPEL realize centralized
compositions.

Singh et al. [126] present a software architecture for web services: Aspect-Oriented Web
Services (AOWS). It is targeted at describing crosscutting concerns between web services to give
more complete description of Web services, supporting richer dynamic discovery and seamless
integration. An implementation is made on the .NET platform and all AOWS subsystems and
their relationships have been formally modeled. While aiming to achieve similar goals as the
WSML, AOWS does not support third-party independent services as services need to be modeled
in an AOWSDL language, and registered in a dedicated AOUDDI registry.Multiple services
are bundled in a centralized fashion in an AOComposite. The aspectual features of the AOWS
framework are used to provide more efficient and effective dynamic description, discovery and
integration.

Decentralized web service composition. A few approaches have recently been put forward
for decentralized web service composition that do not employ AOP techniques. Most notably,
Chafle et al. [41] propose techniques for the partitioning of web service compositions and error
handling mechanisms for distributed web service compositions.

4.3.2 History-based aspects
AspectJ [89] is the seminal proposal for AOP. This language supports pointcut and advice defi-
nitions. A pointcut is an expression that denotes execution points. An advice is a piece of code
to be executed before, after or around (i.e., instead of) an execution point. An aspect definition
can contain several pointcuts and advices in order to implement a given concern. An aspect is
quite similar to an execution monitor: each time an execution event is matched by a pointcut,
its associated advice is executed. Pointcuts can be defined independently, or they can be related
with one another. In particular, AspectJ provides an operator cflow in order to select a method
call within the control flow of another method call. This mechanism can be formalized as (call)
stack inspection [124].

Other mechanisms have been proposed to relate pointcuts with each other according to an
history. For instance, AspectJ also offers a static operator for control flow, pcflow (for predicted
control flow), which can be formalized as inspection of the static call graph. An operator dflow
(data-flow) has been proposed in order to relate pointcuts related by an information flow [99].
Event-based AOP [62] and trace matches [8] both can be formalized as inspection of the exe-
cution trace. Event-based AOP has been adapted to a concurrent context in order to inspect the
interweaving of the concurrent execution traces [58]. This line of work has also been extended
to a distributed context, in order to match control-flow and sequence across several hosts [106].

36

The challenges of these work is to provide high-level yet efficient pointcuts. Their imple-
mentation can require static analyses for efficiency concerns [111].

4.3.3 Formal semantics for and properties of aspect-based systems
AOP has first been supported by tools such as AspectJ, then came semantics. Numerous se-
mantics have been proposed for AOP. Some of them describe an implemented system such as
AspectJ, or one of its subset for these systems are often big and complex. Others are more
generic but they require translations of existing systems. As for any other language, semantics
can be either denotational or operational. The more abstract ones are presented as calculus. We
detail here a few representative of them.

First, Wand et al., [134] propose a denotational semantics for an idealized AspectJ-like sys-
tem. Their language offers joinpoints, pointcuts and advices. The base language is a subset
of scheme with first order function only. The keyword proceed and cflow are supported, but
dynamic pointcuts that dynamically check a predicate and exceptions are not supported. This
first semantics have provided a better understanding of some core notions of AOP, however it is
complex and it has not led to formal study of properties.

Clifton and Leavens [44] propose a small step operational semantics that describes each
execution steps (hence implementation) in more detail. It is based on a subset of AspectJ and
on a subset of Java. This language offers the main mechanisms of an object oriented language:
class, object instantiation, method call, late binding, etc. Only around aspects can be defined
but their advice can modify the parameter of proceed, in particular it can change the receiver
of the intercepted method call. This detailed semantics operationally describes the method call
interception but it does not cover more advanced features such as dynamic pointcuts based on a
predicate, exceptions, or dynamic instantiation of aspects.

Jagadeesan et al., [32] propose a aspect calculi that does not depend on a given programming
language. In their calculus, each computation emits an execution event. These events can be
seen as messages transmitted from a sender to a receiver. In this context, an around-like advice
can intercept and modify message passing. The authors have demonstrated how to encode a
functional language and an object-oriented language in their calculus. This semantics does not
enable history-based pointcuts.

Last but not least, the Common Aspect Semantics Base (CASB) [56], is a generic framework
for defining small step operational semantics of AOP systems. It does not rely on a particular pro-
gramming language but it offers different constructs and rules according to the kind of language
to be formalized. This enables us to keep the semantics as simple as possible by introducing only
the required features. This framework has been successfully used to model a subset of Java, as
well as several specialized aspect languages that preserve families of properties [57].

Semantics are interesting for they provide a simple, abstract definitions of the main mech-
anisms of a language. And they are yet more interesting when they enable to study formal
properties. We now detail these studies.

The generalization and formalization of the call stack inspection-based aspects [124] models
a pointcut by a regular expression (of the stack). This formalization enables to statically detect
(by computing the intersection of two regular expression) when two aspects execute their advice

37

at the same joinpoint. The conflict of aspect is one of the most studied property. In [59, 60] we
studied how to statically detect conflicts of stateful aspects (i.e., aspects with history based on
the execution trace). This analysis is based on the product of the two automata that represents
the sequences of expected events by each aspect. Latter [56], we studied some classes of aspects
that preserve some families of properties for the base program. In general, any safety or liveness
property of the base program can be violated by weaving an aspect. In our study, the less power-
ful the aspect is, the more it preserves properties. We have identified families of properties to be
preserved defined by subsets of the temporal logic LTL. And we have identified the correspond-
ing classes of aspects. This study led us to design restricted aspects languages [57] that preserve
by construction a family of property (i.e., any aspect that can be defined in the class preserves all
properties of the family). This has been formally proved in the context of our Common Aspect
Semantics Based (CASB) framework for an imperative base language. Our families of properties
are based on previous work by Katz [87].

Other works focus on specific aspect classes. They use different techniques such as typing
([54],[53]), Hoare Logic ([43]), proof carrying code ([20]). Some work propose a modular ver-
ification techniques [93, 75, 86]. All these work are devoted to general classes of aspects (for
instance, the class of aspects that do read but do not write the variables of the base program).
Such a large class of aspect is of few use to deal with security properties. One notable excep-
tion is the work of Fradet and Hong Tuan Ha [74] that defines an aspect language to prevent the
denials of service such as starvation caused by resource management.

4.3.4 Aspect-based evolution of protocols
There are some approaches which consider aspect languages that explicitly support the manip-
ulation of protocols, most notably [7, 61, 133]. Approaches [7, 61] feature regular aspect lan-
guages and a framework for static analysis of interaction properties. The language introduced
by Walker and Viggers[133], one of the very few approaches providing non-regular (but not
turing-complete) pointcut languages, proposes tracecuts which provide a context-free pointcut
language. However, all of the above approaches do not use the language for an integration of
aspects and components or explore the problem of property-preserving for systems that have
protocols being modified by aspects. Farı́as [68] has proposed a regular aspect language for
components that admits advice modifying the static structure of protocols and considered proof
techniques for the resulting finite-state based aspects.

More recently, Nguyen and Südholt [107] have presented the first exploiting formal meth-
ods to investigate the preservation of compositional properties such as compatibility and sub-
stitutability for component-based systems that are subject to evolution by protocol-modifying
aspects. There approach is based on a pointcut language that allows matching of VPL (visi-
bly pushdown language) expressions, a language class strictly larger than regular ones but also
strictly smaller than context-free ones. VPLs have all effective (but less efficient) decision pro-
cedures and closure properties that are enjoyed by regular languages.

38

Chapter 5

State of the Art: industrial approaches

In this chapter, we first describe implementations of service-oriented infrastructures. There are
two mainstream implementations, using the Web, the WS* stack, corresponding to a process-
oriented model, and the restful web services, corresponding to a resource-oriented model. Sec-
ond, we describe cloud computing, a new field where service-oriented computing is intensively
used. Indeed, with cloud computing, software, platforms and infrastructures are provided over
Internet as services. Finally, we review existing infrastructures and standards of our industrial
partners.

5.1 The WS* stack
This section provides an overview of established specification languages and infrastructures for
Service-Oriented Architectures (SOA). The Organization for the Advancement of Structured In-
formation Standards (OASIS) defines a service as a mechanism to enable access to one or more
capabilities, where the access is provided using a prescribed interface and is exercised consistent
with constraints and policies as specified by the service description [47]. The SOA properties,
such as loose coupling, interoperability, re-usability, etc., provide a good computer system archi-
tectural style for creating and using business processes, packaged as services, throughout their
life-cycle. Nowadays, SOA is typically implemented by Web Services, such that services are
made accessible via Web interfaces using XML. It has to be noted that a service-oriented ar-
chitecture is not tied to a specific technology. It may be implemented using a wide range of
technologies, including SOAP, RPC, DCOM or Web Services. A SOA can be implemented us-
ing one or more of these protocols. In this respect, several industrial standards are specified (see
figure 5.1). As a starting point, we begin with a short summary of most important and extensively
used standards, to emphasize the main characteristics of service orientation: their heterogeneous,
distributed, and dynamic nature.

39

Figure 5.1: SOA Industrial Standard Stack

5.1.1 Integration Layer
The integration layer corresponds to the two upper layers of our service model, collaborations
and processes.

Business Collaboration Languages : Choreography There are two main proposals for chore-
ography.

Web Service Choreography Description Language - WS-CDL The Web Services Choreog-
raphy Description Language (WS-CDL) is a W3C candidate recommendation since 2005 [136].
Many concepts are similar to WSCI, and, once more, the philosophy of WS-CDL is not the
definition of an executable description or a new web-service, but to describe the common
collaborative observable behavior of a system in terms of abstract business processes. This
may also be regarded as a protocol between autonomous parties without a central point of
control. When a service does show a behavior violating these constraints, this is considered
as an error in the sense that it is not compliant with its WS-CDL description.

40

WS-CDL is related to formal methods, in particular pi-calculus by which some concepts
have been inspired. However, the designers have not defined a formal semantics so far and
many questions remain open, in particular the mapping of constructs to lower levels of the
stack, in particular the link to WSDL and BPEL descriptions [17].

Web Services Choreography Interface The Web Service Choreography Interface (WSCI) was
proposed in 2002 by BEA Systems, Intalio, SAP, and Sun and has the status of a note of
the W3C since then [130]. Apparently, it never made it to a recommendation so far. WSCI
works in conjunction with WSDL so that one can dynamically find web services and use
them in ones business processes which requires a definition of the possible collaboration
and interaction of partners. A WSDL description provides basically static information
about a service; WSCI complements the static interface details provided by the WSDL
file by describing the choreography of operations. Thus, WSCI describes the observable
flow of messages of (stateful) web services. The goal is to enable users to understand how
to interact with a service in a meaningful way. More in detail, the additional information
about the dynamic behavior of web services that a WSCI can provide and that are not
covered by a WSDL description are the following.

• Sequence of messages and processes, e.g. the operation of placing an order must
occur before the actual payment operation is performed.

• Correlation of messages, e.g. correlating a reply (and subsequent communication) to
a request using an order-ID.

• Workunits: what triggers a message exchange/process, when is it finished? This
includes also the ability to either execute the entire unit or restore a consistent state
prior to execution (compensation).

• Handling of exceptions like a time-out. WSCI also supports catching exceptions,
allowing for recoverable operations.

• Defining Contexts in which variables are shared or to which exceptions are related.

There are basic activities like request and response messages or invocation of external
services, and structured activities like sequential and parallel processing.

Business Process Languages : Orchestration Business processes can be described at two
levels, a modeling one and an execution one. Sometimes, during its execution, a business process
mixes automatic tasks and human tasks. Here are the corresponding specifications.

Business Process Modeling Notation - BPMN BPMN is a standardized graphical notation for
drawing business processes. BPMN provides the capability for defining and understanding
business processes through a BPD, which gives the ability to communicate business pro-
cedures1 in a standard manner. BPMN is based on graphical notations which are used to
symbolize business processes. BPMN supports modeling concepts that are applicable to
business-to-business processes, it facilitates communication between all users/roles/groups

41

of complex business processes. BPMN was developed by Business Process Management
Initiative (BPMI), and is now being maintained by the Object Management Group. There
are 53 current implementations and 4 planned implementations of BPMN.

The primary goal of BPMN is to provide a standard notation that is readily understandable
by all business stakeholders 2. These business stakeholders include business analysts who
creates and refine processes, technical developers responsible for implementing the pro-
cesses, and business managers who monitor and manage processes. Consequently BPMN
is intended to serve as common language to bridge the communication gap that frequently
occurs between business process design and implementation.

Business Process Execution Language for Web Services -BPEL4WS BPEL4WS is an XML
schema based abstraction that enables the composition of multiple synchronous and asyn-
chronous web services into an end-to-end business flow. BPEL4WS provides a formal
mechanism for business process management systems to define and execute business pro-
cess and to inter operate with each other.

BPEL4WS is an OASIS standard which was renamed WS-BPEL. BPEL4WS represents
the uniting of two previously competing standards.

1. Web Services Flow Language (WSFL) from IBM, and Microsoft(support for graph
oriented processes).

2. XML business process language in BizTalk Server(XLANG) (structural constructs
for processes).

The WS-BPEL standard is based on other WS-* specifications, more precisely the WS-
BPEL process model is layered on top of the service model defined by WSDL 1.1, that
is a stateless model of correlated request-response (or solicit-response) interactions or un-
correlated one-way interactions (one-way or notification) and adds support for business
transactions. Note that, e.g., the standard WSDL SOAP binding comprises one-way and
request-response primitives only, thus providing an even weaker service model. Other
bindings may support the full WSDL process model.

As defined in the abstract of BPEL specification [109], WS-BPEL is a language for spec-
ifying business process behavior based on Web Services. Processes in WS-BPEL export
and import functionality by using Web Service interfaces exclusively. BPEL processes are
executed by an execution engine, which publishes BPEL processes through a Web Service
interface. Thus, every BPEL-process composed of Web Services is a Web Service itself
and can be used as a component of higher-level BPEL-processes.

BPEL provides a language for the specification of both, executable and abstract business
processes composed of Web Services. Abstract business processes are partially specified
processes that are not intended to be executed and, thus, only describe the observable
behavior of a process (behavioral interface). This interface captures constraints on the
ordering of messages to be sent to and received from a service. Using abstract processes,
concrete operational details of a service can be hidden from, e.g., a business partner. An

42

executable process on the other side augments an abstract process with all of the required
concrete operational details so that the process can be executed by a BPEL execution en-
gine. This is achieved by defining the execution order of a set of activities, the partners
involved in the process, the messages exchanges between the partners, and reactions to
specific events, exceptions or faults.

Human Interaction in Business Processes In June 2007, Active Endpoints, Adobe, BEA, IBM,
Oracle and SAP tried to fill this gap and published WS-HumanTask (Web Services Human
Task, Version 1.0) [4] and BPEL4People (WS-BPEL Extension for People, Version 1.0) [5]
specifications. These specifications describe how human interaction could be implemented
in BPEL processes. BPEL4People is not a new version of BPEL but extends BPEL using
WS-HumanTask. Both specifications went into OASIS specification process quite recently.

The BPEL specification focuses on business processes the activities of which are assumed
to be interactions with Web services, without any further prerequisite behavior. But the
spectrum of activities that make up general purpose business processes is much broader.
People often participate in the execution of business processes introducing new aspects
such as interaction between the process and user interface, and taking into account human
behavior. Different standardization efforts are performed in order to define human inter-
action in business process. Two specifications are introduced; Business Process Execution
Language extension for People (BPEL4People) and Web Services for Human Task (WS-
HT) to integrate human interaction in BPEL4WS. These specification introduces a BPEL
extension to address human interactions in BPEL as a first-class citizen. It defines a new
type of basic activity which uses human tasks as an implementation. The goal of these
specification is to enable portability and interoperability:

1. Portability - The ability to take design-time artifacts created in one vendor’s environ-
ment and use them in another vendor’s environment.

2. Interoperability - The capability for multiple components (process infrastructure, task
infrastructures and task list clients) to interact using well-defined messages and proto-
cols. This enables combining components from different vendors allowing seamless
execution.

Business Process Execution Language extension for People (BPEL4People) integrates hu-
man behavior in a Services Oriented Application (SOA). According to the BPEL4People
specification A new type of basic activity which uses human tasks as an implementation,
and allows specifying tasks local to a process or use tasks defined outside of the process
definition. This extension is based on the WS-Human Task specification. Web Services
Human Task is an activity performed by humans and considered as part of the business
process. A human task might be as simple as only Approval and as complex as Delegation
of task. The WS-Human Task specification introduces the definition of human tasks and
notifications, including their properties, behavior and a set of operations used to manip-
ulate human tasks. A coordination protocol is introduced in order to control autonomy
and life cycle of service-enabled human tasks in an interoperable manner. Web Service

43

for Human Task (WS-HT) provides business analyst the ability to define human behavior,
this can be done by services offered by a task and a person assigned to the task to perform
the activity i.e. Approve Document. At a task level generic human roles are task initiator,
task stakeholder, potential owner, actual owner, excluded owner, business administrator
and notification recipients. People assignments allows a business analyst to assign a cer-
tain role for a human task. When defining these kinds of services we consider who should
be permitted to play a certain role on the task and how this service is performed. During
assignment of these tasks a modeler can specify access controls and define policies for a
specific activity, these policies are inherited as WS-Policy 1.5.

XML Process Definition Language - XPDL XML Process Definition Language (XPDL) is stan-
dardized by the Workflow Management Coalition (WfMC) since 2002. Formerly working
on WPDL (Workflow Process Definition Language), WfMC soon changed their language
name to XPDL when it was decided to use XML for its syntax. Current version is XPDL
2.1 .

XPDL is designed to answer the Process Definition Interchange question, which is, ac-
cording to WfMC, one of the key features a workflow management system must have.
Since 2.0, XPDL is even explicitly designed to allow store and exchange of BPMN dia-
grams. To quote WfMC: XPDL is the Serialization Format for BPMN. This means there is
a one to one matching between a BPMN diagram and its XPDL translation. That includes
the graphical part of BPMN: the coordinates of the different elements, of the lines linking
those elements, all this is included in XPDL.

5.1.2 Quality of Service Layer
This layer defines extra specifications for services in order to ensure non-functional properties
like security for instance.

WS-Security WS-Security defines a SOAP Security Header format containing security related
information. A SOAP message may include multiple security headers. Each header is
targeted at a specific SOAP actor/role that may be either the ultimate recipient of the mes-
sage or an intermediary. Security headers may encapsulate one or many elements of the
following types:

• Security tokens

• Signatures

• Encryption elements

• Timestamps

By providing a common syntax and a flexible processing model for security headers, this
specification accommodates a large variety of security models and encryption technolo-
gies. Moreover, incorporating security features in the application level ensures end-to-end
security.

44

WS-Trust This specification provides a framework built on WS-Security for managing security
tokens. In the WS-Trust trust model, a requester examines the policy associated with a Web
Service to identify the claims it needs. If the policy statements require security tokens that
the requester does not possess, WSTrust specifies a way of obtaining them: contacting a
Web Service referred to as Security Token Server (STS). A STS may also be used to renew,
cancel and validate security tokens.

WS-Trust defines abstract formats of the messages used to manage security tokens. To each
usage pattern corresponds a specific binding providing concrete semantics to the general
security token requests and responses. For complex scenarios, WS-Trust describes flexi-
ble mechanisms for trust establishment. In fact, different STS may get involved to broker,
exchange or delegate security tokens issuance. A general model for negotiation/challenge
extensions is specified to support multi-messages exchanges for security tokens manage-
ment.

The flexibility and extensibility of the specification allows interfacing with a large number
of security models, including legacy protocols. In fact, increasing interoperability between
trust domains is one of the purposes of this standard.

WS-Policy The WS-Policy is a policy expression language for describing the capabilities and
requirements of a Web Service, i.e. representing whether and how a message must be
secured, whether and how a message must be delivered reliably or whether the request
must follow a transaction flow. Such requirements are translated into machine-readable
policy expressions that are usually provided by the web service developer for the client
component to automatically apply the requirements.

Basically, WS-Policy is a simple language that defines four elements (Policy, All, Exact-
lyOne, PolicyReferences) and two attributes (Optional, Ignorable) that suffice to express
generic policy expression by combining individual assertions. The policy assertions syn-
tax are outside the scope of WS-Policy specifications. Thus, WS-Policy can be viewed as
a meta policy composition language that can express any kind of requirements as long as
the policy-aware clients (Web Services endpoints and relays) are capable of understand-
ing the specific syntax of the unitary assertions. An individual policy assertion expresses
one requirement, behavior or capability related to messaging (how the message must be
built), security (how the message must be secured through authentication or encryption),
reliability (how to ensure that the message has been sent/received) and transaction (what
transaction flow must be followed to ensure transaction commit).

XACML XACML (eXtensible Access Control Markup Language) is a declarative XML-based
access control policy language used to describe the access control restrictions to actions
on objects. Usually, access control models involve a subject (that is, either a user, a user
on behalf of another user, a service, or a service on behalf of a user) making some access
request and the system either authorizes this access request or denies it. XACML also
defines a processing model, which describes how to operationally interpret the policies.

XACML defines both an access control policy language (to express the access control

45

conditions) and a canonical XML language to communicate with a Policy Decision Point
(PDP), to send to the PDP decision requests and obtain decision responses. This canonical
form or language is called the XACML context. The current version of XACML, Ver-
sion 2.0, was released by OASIS in February 2005. Version 3.0 is in preparation at the
time of preparation of this document (June 2008). It is chartered to add generic attribute
categories for the evaluation context and policy delegation profile (administrative policy
profile). There are already some prototypical implementations of XACMLv3.0.

WS-Federation The WS-Federation specification [48] defines mechanisms to support federa-
tion between different security realms, i.e.,the authorized access for principals of one realm
to resources managed by another. The WS-Federation framework builds on the specifica-
tion for WS-Security and WS-Trust. Specifically, WS-Federation relies on the Security To-
ken Service (STS) model defined by WS-Trust, and a protocol (involving Request Security
Token and RST Response messages) for handling such tokens, which contain information
described by WS-SecurityPolicy [82]. The STS is used to broker an establishment of a
trust relationship between resource providers / relying parties and other service providers.
The goal is to simplify the development of federated services by reusing the WS-Trust
STS model and protocol. Different federation services can be developed as variations of
the base STS. Processing in WS-Federation is kept independent of the security token for-
mat and the type of token being transmitted. WS-Federation defines a metadata model and
a document format describing how services can be discovered and combined, as well as
their access policies.

SAML The Security Assertion Markup Language (SAML) is an XML standard for assertions
regarding identity, attributes and entitlements of a subject [49]. It allows to exchange au-
thentication and authorization data between security domains, that is, between an identity
provider (a producer of assertions) and a service provider (a consumer of assertions). The
primary example for the use of SAML is is the Web Browser Single Sign-On (SSO) prob-
lem. The service provider relies on a SAML assertion from the identity provider about
the principal to make an access control decision. This setup requires the existence of local
authorization services from an identity provider, however, SAML provides a level of ab-
straction, since it does not specify how they are implemented. SAML is a dialect of XML,
uses the XML signature and encryption facilities, and relies on HTTP, specifying the use
of SOAP.

Generally, a SAML assertion is a statement made at a given time by an issuer regarding a
subject provided that certain conditions hold. SAML assertions can contain three types of
statements: authentication, attribute and authorization decision statements. Each of these
corresponds to a type of query which forms part of a SAML request-response protocol. The
structure of an assertion is described by a SAML profile, which may be defined dependent
on the desired application. At the implementation level, SAML messages admit bindings
to several standard message types and protocols [95]. SAML provides XML formats for
transmitting security information, defines how they work with underlying protocols, and
specifies message exchanges for common use cases. In addition, it supports several privacy

46

protection mechanisms (providing means to determine security attributes without revealing
identity), and specifies a schema that allows systems to communicate the SAML options
they support. SAML is linked to the WS family of standards: SAML assertions are one
supported security format for WS-Trust.

WS-Reliability WS-Reliability is a SOAP-based specification for reliable messaging require-
ments [110]. Subsequently to its standardization in 2004 (v. 1.1), the WSReliable Messag-
ing specification was developed by the same OASIS Technical Committee. WS-Reliability
separates reliable messaging issues into a protocol (wire) aspect which deals with the hor-
izontal contract between sender and receiver (e.g., message headers, choreography) and a
quality of service aspect which deals with the vertical contract between service provider
and service users. The latter defines a set of abstract operations on messages (such as
Deliver, Submit, Respond and Notify). The specification assumes transparency of SOAP
intermediaries and support for message integrity (e.g., as in WS-Security).

5.1.3 Discovery, Registry, and Publishing Layer
A typical service-oriented architecture includes partners acting as service requesters, service
providers and service brokers. Initially, the provider publishes a description of its services to the
broker. When the requester wants to use a service, it needs first to discover its location with the
broker and then to bind to the provider. Two specifications deal with discovery and publishing.

Universal Description Discovery and Integration - UDDI The current version of UDDI, ver-
sion 3.0.2, was released by OASIS in February 2005 [131, 46]. It provides the infras-
tructure required to publish and discover services in a systematic way. UDDI specifies an
XML-based registry wherein service providers can register their available Web Services
and whose content can be browsed by clients. A common usage is the description of every
particular service in WSDL and their registering in a UDDI registry. The UDDI data model
is an XML schema that describes services, using the following structures:

• businessEntity: represents the provider of Web Services. It contains information
about the company, including contact information, industry categories, business iden-
tifiers and a list of services provided.

• businessService: represents an individual Web Service provided by the business en-
tity. Its description includes information to bind to the Web Service, its type and
taxonomic categories.

• bindingTemplate: represents the technical implementations of the Web Service rep-
resented by the business service structure.

• tModel: represents metadata used for more detailed information about a service.

• publisherAssertion: represents the association between some businessEntity struc-
tures according to a specific type of relationship, such as subsidiary or department.

• subscription: is used to subscribe to events about changes of a list of entities.

47

As a registry is useless without some way to access it, UDDI specifies two interfaces for
service consumers and service providers to interact with the registry. Service consumers
use the Inquiry API to find a service, and service providers use the Publisher API to register
a service.

WS-Discovery The WS-Discovery standard [101] provides a mechanism for finding the specific
addresses of web-services at run-time. It relies on a multicast protocol to will respond.
When a web-service provider joins the network, it sends an announcement message to the
multicast group in order to minimize the need for polling.

Various security threats have been identified for this service [101], including message al-
teration, replay, and denial of service attacks. To prevent these, the standard recommends,
but does not enforce, using standard cryptographic techniques such as digital signature
schemes and employing timeouts.

5.1.4 Description Layer
Services needs to be described in order to be used.

Web Service Description Language - WSDL The Web Service Description Language (WSDL) [50]
is responsible for describing Web Services, especially the interface a Web Service exposes
to other applications. Means for expressing service interfaces are at the core of all service
models, and WSDL provides very flexible, highly-extensible, and well designed methods
for doing this. As most other Web Service standards, WSDL is based on XML. WSDL
documents contain all information required for the use of a Web Service, including data
types, message patterns, method descriptions, and service location. As a consequence, pro-
gramming frameworks that are based on Web Services - such as Windows Communication
Foundation (WCF) [45] - provide tools that consume a WSDL document and dynamically
create the proxy code necessary for the use of a Web Service. In WSDL, Web Services
are expressed as collections of endpoints that exchange messages. WSDL also contains in-
formation of how these messages are mapped to a concrete network protocol - a so-called
binding - so that these messages can be exchanged in an interoperable fashion.

5.1.5 Messaging and Transport Layer
This layer is not integrated in our conceptual service model, since it is essentially at the infras-
tructure level.

TCP, UDP / HTTP, SMTP Transport protocols are required to facilitate message delivery. The
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) belong to the
core protocol stack of the Internet. TCP, as a session-based, reliable and in-order delivery
transport protocol, is suitable for applications like file transfer, e-mail, exchanges between
Web servers and clients. UDP is a fast and efficient protocol that is stateless and unreliable;
datagrams (short messages) may arrive out of order, duplicated or missed without notice.

48

Unlike TCP, UDP is compatible with broadcasting (sending to all on local network) and
multicasting (sending to all subscribers).

The most common communication protocols are the Hypertext Transfer Protocol (HTTP)
(or its secured variant HTTPS) and the Simple Mail Transfer Protocol (SMTP), thus by
sending XML requests, and getting XML responses over the transport protocol. HTTP is a
request/response standard between a client (an end-user) and a server (a Web site). HTTP
is not constrained to using TCP/IP and its supporting layers, it only presumes a reliable
transport. SMTP is a relatively, text-based protocol. It is the de facto standard for e-mail
transmissions across the Internet.

XML-RPC XML-RPC [135] is a Remote Procedure Call protocol that uses XML to encode
the messages and HTTP to handle them. A network node (the client) sends a request
message to another node (the server), which sends a response message to the client. XML-
RPC is a precursor to SOAP. It is sometimes preferred to SOAP because of its simplicity,
minimalism, and ease of use.

Simple Object Access Protocol - SOAP The Simple Object Access Protocol (SOAP) [51] de-
fines a Remote Procedure Call using an XML messaging protocol for basic service inter-
operability. SOAP once stood for Simple Object Access Protocol, but this acronym was
dropped with the version 1.2 of the standard, as it is not simple anymore and it is not only
used to access objects. It is a messaging framework for transferring information between
an initial SOAP sender, optionally some intermediate receivers and an ultimate SOAP re-
ceiver.

This protocol is non-proprietary (it became a W3C Recommendation in 2003) and platform
and language independent. It can be run over a simple transport protocol (e.g., HTTP or
SMTP). There are examples of the usage of SOAP services over the transport protocols
in [127]. For instance, one can also explore sending and receiving service-oriented requests
over the Simple Mail Transfer Protocol (SMTP). In fact the nature of the service-oriented
architecture enables one to expose services over any protocol, even beyond those described
in official bindings such as TCP, named pipes, UDP and custom transport protocols.

5.2 Alternative: Restful web services
As already mentioned, there is an alternative solution for web services: RESTful web services.
In this model, which is resource-oriented, any information that can be named is abstracted as a
resource. and resources are manipulated using a fixed set of four CRUD (create, read, update,
delete) operations. In a context analogous to databases, CRUD languages for RESTful web
services have been developed as variants of the SQL language: see for instance the language YQL
from Yahoo. But, contrary to the process-oriented model, there is no standard like BPEL, which
has led to the current diversity of CRUD languages in use.

The Representational State Transfer (REST) [71] is a network architecture paradigm relying
on standard transport protocols like HTTP, without the use of an additional messaging layer. A

49

service call is handled via its URI. The term REST was coined by Roy Fielding in his PhD dis-
sertation [71]. ”REST provides a set of architectural constraints that, when applied as a whole,
emphasizes scalability of component interactions, generality of interfaces, independent deploy-
ment of components, and intermediary components to reduce interaction latency, enforce secu-
rity, and encapsulate legacy systems”. Fielding describes the software engineering principles
guiding REST and the interaction constraints chosen to retain those principles, contrasting them
to the constraints of other architectural styles. HTTP provides the standard CRUD operations
(GET, POST, PUT, DELETE) as procedure calls. Each method has clear defined semantics that
can be relied upon. Security is handled as for a standard Web application (using SSL, sessions,
cookies, etc). REST is a client-server, stateless, cacheable and layered network paradigm. The
World Wide Web is the key example of a REST design.

5.3 Cloud computing
Cloud computing provides three kinds of services that we detail now.

5.3.1 Software as a Service (SaaS)
Many platforms nowadays proposes Software on-demand, also known as Software as a Service.
SaaS vendors provide applications to end users on demand. Instead of purchasing software for
on-premise use, customers license use of applications as a service over the web, and may pay
based on number of users accessing applications or by utilization.

See section 5.4.2 for more details about ByDesign.

5.3.2 Platform as a Service (PaaS)
PaaS provides an additional level of abstraction, thus emulating a virtual platform on top of the
infrastructure. Service Providers (like VMware) might be caring for databases or servers and
provide a consistent service-oriented abstraction for programmers to access to these, without
the developer needing to care for their maintenance or management. Mashups are providing
a consistent view over publications originating from different service providers acting as pub-
lishers. In a completely different fashion, systems like Hadoop are for instance combining any
number of nodes into a single virtual computer abstraction. Not all PaaS systems are actually
service oriented, but there’s an increasing tendency to provide access to such functions through
a service-oriented API though. It should also be understood that such services are also providing
a form of coordination over IaaS services. PaaS generally features a form of intermediation to
underlying services akin to middleware in traditional communication stacks.

5.3.3 Infrastructure as a Service (IaaS)
The ”Infrastructure as a Service” approach touted by cloud computing aims at sharing the infras-
tructure in order to reduce the cost of operating it. Services in that case relate to the management

50

and customization of infrastructure mechanisms. Virtualized execution environments and dis-
tributed data storage are common examples of such services. They are being supported by an
increasing range of companies (Amazon, Google, Canonical, etc.) and brought to the program-
mer through an increasing number of service oriented APIs, notably REST ones, like for instance
Amazon EC2 for execution environments, or Amazon S3 for distributed data storage. Although
IaaS is often likened to cloud computing by many, one can observe that embedded system in-
frastructures (virtual machines, communication frameworks) are increasingly service-oriented.
The main drawback of today’s IaaS APIs is that they exhibit only an informal contract with the
infrastructure, which can only be made more explicit through examples since the infrastructure’s
internal organization and behavior are not exposed. Service Level Agreements (SLAs) may be
complementing these APIs and describe for instance the expected quality of service.

Vertical composition is perfectly outlined by these three types of services and how they sug-
gest to perform compositions . In particular, while SaaS offers a complete application as a service
(which might be reused in more complex composite services), and PaaS provides new primitives
for developing applications (that is a set of abstractions devoted to distribution, fault tolerance,
transactionality, etc. as building blocks), IaaS is transparent or even orthogonal to the applica-
tion in itself. Customizable virtual execution environments of the infrastructure might however
interact with applications by modifying the semantics of software that runs on top of them, and
for instance provide additional transactional, fault-tolerance, or security properties . Further-
more, security constraints are likely to arise at the infrastructure level due to the deployment
of applications and in particular the geolocation of a particular execution environment or of the
application data. These different points of view on services also have a certain mapping to the
concepts identified in the SOA model defined previously: SaaS corresponds to collaboration and
processes, PaaS to primitive services and resources, and IaaS to resources).

5.4 Infrastructures and standards of the CESSA industrial
partners

5.4.1 Challenges for service-based business applications
SAP has proposed the notion of enterprise service-oriented architecture [123] as a business driven
approach to SOA that expands the concept of Web services into an architecture that supports an
enterprise-wide, service-enabled business architecture (see Fig 5.2).

In a nutshell, enterprise services are highly-integrated web services combined with business
logic and semantics that can be accessed and (re)used to support a particular business process.
The main characteristic that differentiates enterprise services from regular Web Services is their
integration with the underlying business semantics: enterprise services are structured according
to a harmonized enterprise model based on business objects, process components, and global
data types (GDTs).

The dynamic evolution of such integrated enterprise SOAs, in particular under the constraint
to enforce unanticipated new security requirements, has however not yet been investigated.

51

Figure 5.2: The SAP Vision of Enterprise SOA

5.4.2 Business ByDesign, Netweaver
5.4.2.1 SAP Business ByDesign

SAP Business ByDesign [2] is delivered on-demand as a software-as-a-service (SaaS), to address
small and medium enterprises market with a rapid development and adoption of solutions. The
goal is to focus on business needs rather than in software development for most of concepts that
are addressed everyday.

Midsize companies with big plans to grow understand that in addition to great products and
services, they need business processes that contribute to their overall operational excellence.
For starters, they need full-function business applications to advance visibility and control over
key areas of their business. On-demand applications - also known as ”software as a service” -
offer midsize companies these advantages along with reduced operational complexity, reliable
security, privacy protection, and high availability.

The SAP Business ByDesign solution is an integrated, adaptable, on-demand business so-
lution that is managed, monitored, and maintained by SAP experts. On-demand access to the
solution and business data for SAP Business ByDesign requires only a standard Web browser,
thereby simplifying IT requirements.

SAP Business ByDesign provides the flexibility (see Fig 5.3) to change, grow, and extend
the reach of your business across your entire ecosystem. Employees can reconfigure SAP Busi-
ness ByDesign on the fly - without disrupting critical business processes - so you can respond im-
mediately to new opportunities, streamline your operations, and adjust to market requirements.
Because SAP Business ByDesign is engineered to accommodate the individual roles of your
employees, it reflects organizational changes as soon as you notify the software. Flexible and
easy-to-use reports and dashboards help you manage your business in real time, while built-in
support for regulatory compliance makes it straightforward to address changing legal and report-
ing requirements.

52

Figure 5.3: SAP Business ByDesign Life cycle Management

5.4.2.2 SAP NetWeaver

The SAP NetWeaver technology platform enables the composition, provisioning, and manage-
ment of SAP and non-SAP applications across a heterogeneous software environment. That let
standardize business processes across technological boundaries, integrate applications for em-
ployees as needed, and access and edit simple information easily and in a structured manner.
SAP Netweaver provides features depending on the underlying application server used. SAP
support two application servers. The first above an ABAP stack and the other one in a JAVA
stack. Most of features are provided for both technologies, but it may have few differences.
Netweaver covers a large spectre of technology. There is seven topics covered by this solution ,
namely :

• User Productivity : IT organizations can help users and groups improve their productivity
through enhanced collaboration, optimized knowledge management and intuitive search in
business objects as well as unstructured content. Personalized access to mission-critical
applications and data is accomplished using portals, desktop clients and mobile interfaces.
Flexible UI technology enables IT organizations and partners to build their own state-of-
the-art applications.

• Business Intelligence : BI solutions provide comprehensive business intelligence func-
tionality that can empower users to make effective, informed decisions based on solid data
and analysis. All users, from the high-end analyst to the casual business user, have access
to the information they need. With these solutions, users throughout enterprise can access,
format, analyze, navigate, and share information across the organization.

• Business Process Composition : It enables customers to provide design, model, imple-
ment, run, monitor, operate and improve business processes and focuses on model-driven
development of composite applications as an alternative to the traditional code-based ap-
proach

• Enterprise Information Management : It’s the business activity of creating, cleansing,
integrating, managing, governing, and archiving structured and unstructured data used by
an organization. By managing information assets effectively, organizations can minimize

53

data integration efforts, streamline end-to-end business process execution, and gain well-
founded business insight.

• SOA Middleware : It enables IT organizations to use standards-based Web services to
quickly form new, innovative business solutions that meet their changing business needs.
In particular, SAP NetWeaver provides service-oriented architecture (SOA) middleware
that facilitates communication between disparate applications. From a logical view, SOA
middleware consists of an enterprise services repository and registry, an enterprise services
bus (ESB), and SOA management tools.

• Custom Development : IT professionals can extend or enhance existing applications and
create custom applications using either the ABAP or Java programming language.

• Security and Identity Management : Organizations face a difficult challenge in today’s
security-conscious world having to support transparent enterprise boundaries, location-
independent users, and the growing demands for regulatory compliance. IT organizations
can enable safeguards that protect their business, while helping users - and the business
processes they rely on - proceed unhindered by security operations. We develop this sec-
tion (see section 5.4.2.3) as it is of interest for CESSA.

• Application Life-cycle Management : It provides processes, tools, services, and an orga-
nizational model to manage SAP and non-SAP solutions throughout the complete applica-
tion life cycle. Instead of just focusing on the individual phases, SAP provides a holistic
approach

5.4.2.3 SAP NetWeaver Security

In today’s world of collaborative business processes and open system environments, security
no longer means just adding a firewall and using passwords to log on. It requires a complete
approach that not only applies to the IT landscape, but also to issues that arise beyond borders,
in which even simple organizational measures can have a significant impact. The infrastructure
of the SAP NetWeaver technology platform supports the customer by delivering comprehensive
security features for heterogeneous environments [3].

User Authentication and Single Sign-On There are several mechanisms available for authen-
ticating users on the SAP NetWeaver platform. In addition, if you have many systems in
your system landscape, then a Single Sign-On environment is also desirable to reduce the
number of passwords that users have to remember. For example, SAP Netweaver provide
the user and password mechanism for user authentication and single sign on, and also SSL
and X.509 client certificates. It also use Security Assertion Markup Language (SAML) but
only for Single Sign On.

Identity Management SAP systems within the SAP NetWeaver technology platform perform
authorizations using a role-based identity management approach. This means that you
assign authorizations to users based on the job they perform using the particular system.

54

It uses the User Management Engine (UME) for user management and the integration of
user accounts on SAP systems with user accounts maintained on a directory server.

Network and Transport Layer Security You can provide for security at the transport layer for
securing connections between SAP NetWeaver system components. When using transport
layer security, the data transfer not only protected against eavesdropping by using encryp-
tion, the communication partners can be authenticated as well. Protection is provided in
two forms, depending on the type of communication that is being used. For connections
that use Internet protocols such as HTTP, you can use the quasi-standard Secure Sock-
ets Layer (SSL) protocol. For SAP protocols such as RFC or dialog, you can use Secure
Network Communications (SNC).

WS Security SAP Netweaver provides WS-Security standards to build secure services both to
consume and expose them. Depending on which standards you combine, you can reach
different kind of security (e.g single sign on, end-to-end security, etc.).

System Security SAP Netweaver is also cover topics that apply to system security, for example:
key, key pair and trust management, logging of security-related events using the Security
Audit Log, and virus detection using the virus scan interface.

Digital Signatures and Encryption SAP NetWeaver has Secure Store and Forward (SSF) mech-
anisms which provide the means to secure data and documents in SAP Systems as indepen-
dent data units. By using SSF functions, it’s possible to ”wrap” data and digital documents
in secure formats before they are saved on data carriers or transmitted over insecure com-
munication links. If you save the data in a secure format in the SAP System, it remains in
its secured format even if you export it out of the system. SSF mechanisms use digital sig-
natures and digital envelopes to secure digital documents. The digital signature uniquely
identifies the signer, is not forgeable, and protects the integrity of the data. Any changes
in the data after being signed result in an invalid digital signature for the altered data.
The digital envelope makes sure that the contents of data are only visible to the intended
recipient(s).

55

Chapter 6

Conclusion

In this deliverable we have laid part of the foundations for the CESSA project. This document
has provided motivation and basic requirements for the CESSA service and aspect models, as
well as the applications targeted within the project.

First, we have introduced the main concepts of service-oriented computing and aspect-oriented
computing, and the associated terminology.

Second, we have presented a loan negotiation scenario typical for the acquisition of loans in
a business environment that involves customers, banks and credit bureaus. This scenario will be
used over the full duration of the CESSA project. We have presented sets of requirements for
the service and aspect models derived by partners SAP and IS2T using the use case scenario. To
prepare the future developments, we have also introduced a method that will be used to formalize
requirements.

Third, we have provided an extensive analysis of the state-of-the-art of services, composition
techniques, especially aspect-oriented software development. This analysis encompasses both,
academic approaches and industrial systems, including existing industrial standards.

This document provides a basis for the analysis and definition of the security properties that
will be studied as part of the CESSA project and presented in deliverable D2.1. Finally, it paves
the way for the definition of the CESSA service and aspect models, whose (full) definitions will
be provided in deliverable D1.2.

56

Bibliography

[1] Code of conduct - the office of the credit information ombud.
http://www.creditombud.org.za/code.htm.

[2] Sap bydesign. https://www.sme.sap.com/irj/sme/.

[3] Sap security. http://www.sdn.sap.com/irj/sdn/security.

[4] A. Agrawal et al. Web Services Human Task (WS-HumanTask), Version
1.0. http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-bpel4people/WS-HumanTask_v1.pdf, June 2007.

[5] A. Agrawal et al. WS-BPEL Extension for People (BPEL4PEOPLE), Ver-
sion 1.0. http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/
ws-bpel4people/BPEL4People_v1.pdf, June 2007.

[6] Mehmet Akşit, Siobhán Clarke, Tzilla Elrad, and Robert E. Filman, editors. Aspect-
Oriented Software Development. Addison-Wesley Professional, September 2004.

[7] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, et al. Adding trace matching
with free variables to AspectJ. In Richard P. Gabriel, editor, ACM Conference on Object-
Oriented Programming, Systems and Languages (OOPSLA). ACM Press, 2005.

[8] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendren, Sascha
Kuzins, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Ju-
lian Tibble. Adding trace matching with free variables to aspectj. In Ralph E. Johnson
and Richard P. Gabriel, editors, OOPSLA, pages 345–364. ACM, 2005.

[9] Robert Allen, Rémi Douence, and David Garlan. Specifying and Analyzing Dynamic
Software Architectures. In Proceedings of the 1998 Conference on Fundamental Ap-
proaches to Software Engineering (FASE’98), volume 1382 of Lecture Notes in Computer
Science, pages 21–37. Springer-Verlag, 1998.

[10] R. Alur and D. Dill. The theory of timed automata. In J. W. de Bakker, C. Huizing, W. P.
de Roever, and G. Rozenberg, editors, Proceedings of Real-Time: Theory in Practice,
volume 600 of LNCS, pages 45–73, Berlin, Germany, June 1992. Springer.

57

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf

[11] Pascal André, Gilles Ardourel, and Christian Attiogbé. Defining Component Protocols
with Service Composition: Illustration with the Kmelia Model. In Markus Lumpe and
Wim Vanderperren, editors, Software Composition, volume 4829 of Lecture Notes in Com-
puter Science, pages 2–17. Springer, 2007.

[12] André Arnold. Finite Transition Systems. International Series in Computer Science.
Prentice-Hall, 1994.

[13] André Arnold, G. Point, Alain Griffault, and Antoine Rauzy. The AltaRica Formalism
for Describing Concurrent Systems. FUNDINF: Fundamenta Informatica, 34:109–124,
2000.

[14] AspectJ home page. http://www.eclipse.org/aspectj.

[15] Christian Attiogbé, Pascal André, and Gilles Ardourel. Checking component composabil-
ity. In Proceedings of the 5th International Workshop on Software Composition (SC’06),
volume 4089 of Lecture Notes in Computer Science, pages 18–33. Springer-Verlag, 2006.

[16] S. Balsamo, M. Bernardo, and M. Simeoni. Combining Stochastic Process Algebras and
Queueing Networks for Software Architecture Analysis. In Proc. of the Int. Workshop on
Software and Performance (WOSP’2002), 2002.

[17] A. Barros, M. Dumas, and P Oaks. A Critical Overview of the Web Service Choreography
Description Language. BPTrends Newsletter, 3, 2005.

[18] Tomás Barros, Rabéa Boulifa, and Eric Madelaine. Parameterized models for distributed
java objects. In David de Frutos-Escrig and Manuel Núñez, editors, FORTE, volume 3235
of Lecture Notes in Computer Science, pages 43–60. Springer, 2004.

[19] Tomás Barros, Luc Henrio, and Eric Madelaine. Behavioural Models for Hierarchical
Components. In Proc. of SPIN’05, volume 3639 of LNCS, pages 154–168. Springer-
Verlag, 2005.

[20] Gilles Barthe and César Kunz. Certificate translation for specification-preserving advices.
In Curtis Clifton, editor, FOAL, pages 9–18. ACM, 2008.

[21] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Types and effects for
secure service orchestration. In Computer Security Foundations Workshop, pages 57–69.
IEEE Computer Society, 2006.

[22] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time Components in
BIP. In Software Engineering and Formal Methods, 2006. SEFM 2006. Fourth IEEE
International Conference on, pages 3–12, 2006.

[23] Hubert Baumeister, Florian Hacklinger, Rolf Hennicker, Alexander Knapp, and Martin
Wirsing. A Component Model for Architectural Programming. In Proc. 2nd Int. Wsh.
Formal Aspects of Component Software (FACS’05), volume 160 of ENTCS, pages 75–96,
2005.

58

[24] Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. Detecting Architectural Mis-
matches in Process Algebraic Description of Software Systems. In Proc. of the Working
IEEE/IFIP Conf. on Software Architecture (WICSA’2001), pages 77–86, 2001.

[25] Elisa Bertino, Lorenzo Martino, Federica Paci, and Anna Squicciarini. Security for Web
Services and Service-Oriented Architectures. Springer Verlag, 2009.

[26] Tommaso Bolognesi and Ed. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25–29, 1988.

[27] Michele Boreale, Roberto Bruni, Luı́s Caires, Rocco De Nicola, Ivan Lanese, Michele
Loreti, Francisco Martins, Ugo Montanari, António Ravara, Davide Sangiorgi, Vasco Thu-
dichum Vasconcelos, and Gianluigi Zavattaro. SCC: A service centered calculus. In Mario
Bravetti, Manuel Núñez, and Gianluigi Zavattaro, editors, Web Services and Formal Meth-
ods, Third International Workshop, WS-FM, Proceedings, volume 4184 of Lecture Notes
in Computer Science, pages 38–57. Springer, 2006.

[28] A. Bracciali, A. Brogi, and C. Canal. A formal approach to component adaptation. Journal
of Systems and Software, 74(1), 2005.

[29] Mathieu Braem, Kris Verlaenen, Niels Joncheere, Wim Vanderperren, Ragnhild Van
Der Straeten, Eddy Truyen, Wouter Joosen, and Viviane Jonckers. Isolating process-level
concerns using Padus. In Proceedings of the 4th International Conference on Business
Process Management (BPM 2006), Vienna, Austria, September 2006. Springer-Verlag.

[30] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. Journal
of the ACM, 30(2):323–342, 1983.

[31] Lubos Brim, Ivana Cerná, Pavlı́na Vareková, and Barbora Zimmerova. Component-
Interaction Automata as a Verification-Oriented Component-Based System Specification.
In In Proceedings of SAVCBS 2005, pages 31–38. Department of Computer Science, Iowa
State University, 2005.

[32] Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely. microabc: A minimal
aspect calculus. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR, volume
3170 of Lecture Notes in Computer Science, pages 209–224. Springer, 2004.

[33] A. Bucchiarone and S. Gnesi. A survey on services composition languages and models. In
International Workshop on Web Services Modeling and Testing (WSMaTe ’06) Proceed-
ings, pages 37–49, 2006.

[34] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. SOFA 2.0: Balancing advanced fea-
tures in a hierarchical component model. In SERA, pages 40–48. IEEE Computer Society,
2006.

59

[35] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing advanced features
in a hierarchical component model. In SERA ’06: Proceedings of the Fourth International
Conference on Software Engineering Research, Management and Applications, pages 40–
48. IEEE CS, 2006.

[36] Stephan Buse, Mobile Commerce, In Collaboration, Rajnish Tiwari, and Stephan Buse.
The mobile commerce prospects: A strategic analysis of opportunities in the banking
sector.

[37] Luı́s Caires. Spatial-behavioral types, distributed services, and resources. In Ugo Mon-
tanari, Donald Sannella, and Roberto Bruni, editors, Trustworthy Global Computing, vol-
ume 4661 of Lecture Notes in Computer Science, pages 98–115. Springer, 2006.

[38] Muffy Calder, Savi Maharaj, and Carron Shankland. A Modal Logic for Full LOTOS
Based on Symbolic Transition Systems. The Computer Journal, 45(1):55–61, 2002.

[39] L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Proc. of Foundations of
Software Science and Computation Structures (FoSSaCS), European Joint Conferences on
Theory and Practice of Software (ETAPS’98), volume 1378 of Lecture Notes in Computer
Science, pages 140–155, Lisbon, Portugal, 1998. Springer-Verlag, Berlin.

[40] Ivana Cerná, Pavlı́na Vareková, and Barbora Zimmerova. Component substitutability
via equivalencies of component-interaction automata. Electr. Notes Theor. Comput. Sci,
182:39–55, 2007.

[41] Girish B. Chafle, Sunil Chandra, Vijay Mann, and Mangala Gowri Nanda. Decentralized
orchestration of composite web services. In WWW Alt. ’04: Proceedings of the 13th
international World Wide Web conference on Alternate track papers & posters, pages
134–143, New York, NY, USA, 2004. ACM Press.

[42] Anis Charfi and Mira Mezini. Aspect-oriented web service composition with AO4BPEL.
In Liang-Jie Zhang, editor, Web Services, European Conference, ECOWS 2004, Erfurt,
Germany, September 27-30, 2004, Proceedings, volume 3250 of Lecture Notes in Com-
puter Science, pages 168–182. Springer, 2004.

[43] Curtis Clifton and Gary T. Leavens. Observers and assistants: A proposal for modular
aspect-oriented reasoning. Technical Report 02-04a, Iowa State University, Department
of Computer Science, April 2002.

[44] Curtis Clifton and Gary T. Leavens. Minimao: An imperative core language for studying
aspect-oriented reasoning. Sci. Comput. Program., 63(3):321–374, 2006.

[45] Windows Communication Foundation. WCF. http://msdn2.microsoft.com/en-us/
netframework/aa663324.aspx.

[46] Oasis Consortium. Universal Description, Discovery, and Integration specification. http:
//uddi.org/pubs/uddi-v3.0.2-20041019.pdf.

60

http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx
http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf

[47] OASIS Consortium. Oasis: Reference model for Service Oriented Architecture 1.0. http:
//docs.oasis-open.org/soa-rm/v1.0/soa-rm.html, 2006.

[48] OASIS Consortium. Web Services Federation Language (WS-Federation) V1.1.
http://specs.xmlsoap.org/ws/2006/12/federation/ws-federation.pdf, De-
cember 2006.

[49] OASIS Consortium. Security Assertion Markup Language V2.0 Technical Overview.
http://wiki.oasis-open.org/security/Saml2TechOverview, March 2008.

[50] The World Wide Web Consortium. Web Services Description Language (WSDL) version
2.0. http://www.w3.org/TR/2006/WD-wsdl20-rdf-20060327/, 2006.

[51] The World Wide Web Consortium. Simple Object Access Protocol 1.2. http://www.w3.
org/TR/soap12-part1, Apr 2007.

[52] Thomas Cottenier and Tzilla Elrad. Dynamic and decentralized service composition: With
contextual aspect-sensitive services. In José Cordeiro, Vitor Pedrosa, Bruno Encarnação,
and Joaquim Filipe, editors, WEBIST 2005, Proceedings of the First International Con-
ference on Web Information Systems and Technologies, Miami, USA, May 26-28, 2005,
pages 56–63. INSTICC Press, 2005.

[53] Bruno C. d. S. Oliveira, Tom Schrijvers, and William R. Cook. Effectiveadvice: disci-
plined advice with explicit effects. In Jean-Marc Jézéquel and Mario Südholt, editors,
AOSD, pages 109–120. ACM, 2010.

[54] Daniel S. Dantas and David Walker. Harmless advice. In J. Gregory Morrisett and Simon
L. Peyton Jones, editors, POPL, pages 383–396. ACM, 2006.

[55] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Proc. of ESEC/FSE’01,
pages 109–120. ACM Press, 2001.

[56] Simplice Djoko Djoko, Rémi Douence, and Pascal Fradet. Aspects preserving properties.
In Robert Glück and Oege de Moor, editors, PEPM, pages 135–145. ACM, 2008.

[57] Simplice Djoko Djoko, Rémi Douence, and Pascal Fradet. Specialized aspect languages
preserving classes of properties. In Antonio Cerone and Stefan Gruner, editors, SEFM,
pages 227–236. IEEE Computer Society, 2008.

[58] Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario Südholt. Concurrent aspects.
In Stan Jarzabek, Douglas C. Schmidt, and Todd L. Veldhuizen, editors, GPCE, pages
79–88. ACM, 2006.

[59] Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the detection and res-
olution of aspect interactions. In Don S. Batory, Charles Consel, and Walid Taha, editors,
GPCE, volume 2487 of Lecture Notes in Computer Science, pages 173–188. Springer,
2002.

61

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
http://specs.xmlsoap.org/ws/2006/12/federation/ws-federation.pdf
http://wiki.oasis-open.org/security/Saml2TechOverview
http://www.w3.org/TR/2006/WD-wsdl20-rdf-20060327/
http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part1

[60] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and interaction
analysis of stateful aspects. In Gail C. Murphy and Karl J. Lieberherr, editors, AOSD,
pages 141–150. ACM, 2004.

[61] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and interaction
analysis of stateful aspects. In Proc. of 3rd International Conference on Aspect-Oriented
Software Development (AOSD’04), pages 141–150. ACM Press, March 2004.

[62] Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition of crosscuts.
In Akinori Yonezawa and Satoshi Matsuoka, editors, Reflection, volume 2192 of Lecture
Notes in Computer Science, pages 170–186. Springer, 2001.

[63] Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decid-
ability and undecidability. In Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors,
Proceedings of the 25th International Colloquium on Automata, Languages and Program-
ming (ICALP’98), volume 1443 of Lecture Notes in Computer Science, pages 103–115.
Springer, July 1998.

[64] Catherine Dufourd, Petr Jančar, and Philippe Schnoebelen. Boundedness of reset P/T
nets. In Jirı́ Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, Proceed-
ings of the 26th International Colloquium on Automata, Languages and Programming
(ICALP’99), volume 1644 of Lecture Notes in Computer Science, pages 301–310, Prague,
Czech Republic, July 1999. Springer.

[65] Schahram Dustdar and Mike P. Papazoglou. Services and service composition - an intro-
duction (services und service komposition - eine einführung). it - Information Technology,
50(2):86–92, 2008.

[66] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition. Int.
J. of Web and Grid Services, 1:1–30, August 03 2005.

[67] E. Allen Emerson. Temporal and Modal Logic, volume B of Handbook of Theoretical
Computer Science, chapter 16, pages 997–1072. Elsevier, 1990. J. Van Leeuwen, Editor.

[68] Andrés Farı́as and Mario Südholt. Integrating protocol aspects with software components
to address dependability concerns. Technical Report 04/6/INFO, École des Mines de
Nantes, November 2004.

[69] Fabrı́cio Fernandes, Robin Passama, and Jean-Claude Royer. Event strictness for compo-
nents with complex bindings. In Kiran Deshpande, Pankaj Jalote, and Sriram K. Rajamani,
editors, ISEC’09: Proceedings of the 2nd conference on India Software Engineering Con-
ference, pages 47–56. ACM, February 2009.

[70] Fabricio Fernandes and Jean-Claude Royer. The stslib project: Towards a formal compo-
nent model based on sts. In Markus Lumpe and Eric Madelaine, editors, Proceedings of
the 4th International Workshop on Formal Aspects of Component Software (FACS 2007),
volume 215, pages 131–149, June 2008.

62

[71] Roy T. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures, 2000.

[72] Alain Finkel, Pierre McKenzie, and Claudine Picaronny. A well-structured framework for
analysing Petri nets extensions. Information and Computation, 195(1-2):1–29, November
2004.

[73] Howard Foster, Sebastián Uchitel, Jeff Magee, and Jeff Kramer. Model-based verification
of web service compositions. In ASE, pages 152–163, 2003.

[74] Pascal Fradet and Stéphane Hong Tuan Ha. Aspects of availability: Enforcing timed
properties to prevent denial of service. Sci. Comput. Program., 75(7):516–542, 2010.

[75] Max Goldman and Shmuel Katz. Maven: Modular aspect verification. In Orna Grumberg
and Michael Huth, editors, TACAS, volume 4424 of Lecture Notes in Computer Science,
pages 308–322. Springer, 2007.

[76] Gregor Gößler, Susanne Graf, Mila Majster-Cederbaum, Moritz Martens, and Joseph
Sifakis. An approach to modeling and verification of component based systems. volume
4362, pages 61–70, 2007.

[77] Susanne Graf and Sophie Quinton. Contracts for bip: Hierarchical interaction models for
compositional verification. In FORTE, pages 1–18, 2007.

[78] Florian Hacklinger. Java/A - taking components into java. In IASSE, pages 163–168.
ISCA, 2004.

[79] Thomas A. Henzinger and Rupak Majumdar. A classification of symbolic transition sys-
tems. Lecture Notes in Computer Science, 1770:13–34, 2000.

[80] C.A.R. Hoare. Communicating Sequential Processes. C.A.R Hoare Series. Prentice-Hall
International, 1985.

[81] Oscar H. Ibarra, Jianwen Su, Zhe Dang, Tevfik Bultan, and Richard A. Kemmerer. Counter
machines and verification problems. Theoretical Computer Science, 289(1):165–189, Oc-
tober 2002.

[82] IBM and Microsoft Corporation. Understanding WS-Federation. http://msdn.
microsoft.com/en-us/library/bb498017.aspx, May 2007.

[83] ISO/IEC. LOTOS: A Formal Description Technique based on the Temporal Ordering of
Observational Behaviour. ISO/IEC 8807, International Organization for Standardization,
1989.

[84] JBoss. http://www.jboss.org.

63

http://msdn.microsoft.com/en-us/library/bb498017.aspx
http://msdn.microsoft.com/en-us/library/bb498017.aspx

[85] Pavel Jezek, Jan Kofron, and Frantisek Plasil. Model Checking of Component Behavior
Specification: A Real Life Experience. Electronic Notes in Theoretical Computer Science,
160:197–210, 2005.

[86] Emilia Katz and Shmuel Katz. Modular verification of strongly invasive aspects: sum-
mary. In Mario Südholt, editor, FOAL, pages 7–12. ACM, 2009.

[87] Shmuel Katz. Aspect categories and classes of temporal properties. 3880:106–134, 2006.

[88] Gregor Kiczales. Aspect-oriented programming. ACM Comput. Surv., 28(4es):154, 1996.

[89] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of aspectj. In Jørgen Lindskov Knudsen, editor, ECOOP, volume
2072 of Lecture Notes in Computer Science, pages 327–353. Springer, 2001.

[90] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit and
Satoshi Matsuoka, editors, 11th Europeen Conference on Object-Oriented Programming,
volume 1241 of LNCS, pages 220–242. Springer-Verlag, 1997.

[91] D. Kozen. Results on the Propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

[92] J. Kramer, J. Magee, and S. Uchitel. Software Architecture Modeling and Analysis: A
Rigorous Approach. In Proc. of SFM’03, volume 2804 of LNCS, pages 44–51. Springer-
Verlag, 2003.

[93] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. Verifying aspect advice
modularly. In Richard N. Taylor and Matthew B. Dwyer, editors, SIGSOFT FSE, pages
137–146. ACM, 2004.

[94] Ivan Lanese, Francisco Martins, Vasco Thudichum Vasconcelos, and António Ravara. Dis-
ciplining orchestration and conversation in service-oriented computing. In SEFM, pages
305–314. IEEE Computer Society, 2007.

[95] Harold Lockhart. Demistifying SAML. http://dev2dev.bea.com/pub/a/2005/11/
saml.html, September 2005.

[96] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying distributed
software architectures. In Proceedings of ESEC ‘95 - 5th European Software Engineering
Conference, pages 137–53. IEEE, 1995.

[97] Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour Analysis of Software
Architectures. In First Working IFIP Conference on Software Architecture (WICSA1),
volume 140 of IFIP Conference Proceedings, pages 35–50, 1999.

64

http://dev2dev.bea.com/pub/a/2005/11/saml.html
http://dev2dev.bea.com/pub/a/2005/11/saml.html

[98] Olivier Maréshal, Pascal Poizat, and Jean-Claude Royer. Checking Asynchronously
Communicating Components Using Symbolic Transition Systems. In R. Meersman,
Z. Tari, and al, editors, On the Move to Meaningful Internet Systems 2004: CoopIS, DOA,
and ODBASE, volume 3291 of Lecture Notes in Computer Science, pages 1502–1519.
Springer-Verlag, 2004.

[99] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut in aspect-oriented pro-
gramming. In Atsushi Ohori, editor, APLAS, volume 2895 of Lecture Notes in Computer
Science, pages 105–121. Springer, 2003.

[100] Bertrand Meyer. Object-Oriented Software Construction, second editon. Prentice-Hall,
1997.

[101] Microsoft and All. Web services dynamic discovery (WS-Discovery. http://specs.
xmlsoap.org/ws/2005/04/discovery/, April 2005.

[102] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and
Computation, (100):1–77, 1992.

[103] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980.

[104] Robin Milner. Calculi for synchrony and asynchrony. TCS: Theoretical Computer Science,
25:267–310, 1983.

[105] Tadao Murata. Petri nets: properties, analysis, and applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

[106] Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno De Fraine, and
Davy Suvée. Explicitly distributed aop using awed. In Robert E. Filman, editor, AOSD,
pages 51–62. ACM, 2006.

[107] Dong Ha Nguyen and Mario Südholt. Property-preserving evolution of components using
vpa-based aspects. In Proceedings of the 9th International Symposium on Distributed
Objects, Middleware, and Applications (DOA’07), LNCS. Springer Verlag, November
2007.

[108] Oscar Nierstrasz. Regular types for active objects. In Andreas Paepcke, editor, Proceed-
ings of the 8th Annual Conference on Object-Oriented Programming Systems, Languages
and Applications, pages 1–15, Washington, DC, USA, September 26October –1 1993.
ACM Press.

[109] Oasis Consortium. Web Services Business Process Execution Language Ver-
sion 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, 11
April, 2007.

65

http://specs. xmlsoap.org/ws/2005/04/discovery/
http://specs. xmlsoap.org/ws/2005/04/discovery/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

[110] OASIS Web Services Reliable Messaging TC. WS-Reliability 1.1. http:
//docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.
1-spec-os.pdf, November 2004.

[111] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive pointcuts for in-
creased modularity. In Andrew P. Black, editor, ECOOP, volume 3586 of Lecture Notes
in Computer Science, pages 214–240. Springer, 2005.

[112] Julia Padberg. Abstract Petri Nets as a Uniform Approach to High/Level Petri Nets. In
J. Fiadeiro, editor, Recent Trends in Algebraic Development Techniques, Selected Papers
of the 13th International Workshop on Algebraic Development Techniques (WADT’98),
volume 1589 of Lecture Notes in Computer Science, pages 241–260, Lisbon, Portugal,
1999. Springer-Verlag.

[113] George A. Papadopoulos and Farhad Arbab. Coordination Models and Languages. In
The Engineering of Large Systems, volume 46 of Advances in Computers, pages 329–400.
Academic Press, August 1998.

[114] Cesare Pautasso. Bpel for rest. In 7th International Conference on Business Process
Management (BPM08), pages 278–293, Milan, Italy, September 2008.

[115] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. ”big”’
web services: making the right architectural decision. In Proceedings of the 17th Interna-
tional World Wide Web Conference (WWW 2008), pages 805–814, 2008.

[116] Pascal Poizat and Jean-Claude Royer. A Formal Architectural Description Language
based on Symbolic Transition Systems and Modal Logic. Journal of Universal Computer
Science, 12(12):1741–1782, 2006.

[117] Pascal Poizat, Jean-Claude Royer, and Gwen Salaün. Bounded Analysis and Decompo-
sition for Behavioural Description of Components. In Springer Verlag, editor, FMOODS,
number 4037 in Lecture Notes in Computer Science, pages 33–47, 2006.

[118] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition meth-
ods. In Jorge Cardoso and Amit P. Sheth, editors, Semantic Web Services and Web Pro-
cess Composition, First International Workshop, SWSWPC 2004, volume 3387 of Lecture
Notes in Computer Science, pages 43–54. Springer, 2004.

[119] J. Rathke and M. Hennessy. Local Model Checking for Value-Passing Processes (Ex-
tended Abstract). In Martı́n Abadi and Takayasu Ito, editors, Third International Sym-
posium on Theoretical Aspects of Computer Software TACS’97, volume 1281 of Lecture
Notes in Computer Science, pages 250–266. Springer-Verlag, 1997.

[120] John Reynolds. Theories of programming languages. Cambridge University Press, 1999.

[121] Alex Rodriguez. Restful web services: The basics. http://www.ibm.com/
developerworks/webservices/library/ws-restful/, November 2008.

66

http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/

[122] Jean-Claude Royer and Michael Xu. Analysing Mailboxes of Asynchronous Communi-
cating Components. In R. Meersman, Z. Tari, D. C. Schmidt, and al., editors, On the
Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, volume 2888
of Lecture Notes in Computer Science, pages 1421–1438. Springer-Verlag, 2003.

[123] SAP. Service oriented architecture. http://help.sap.com/content/documentation/esoa/.

[124] Damien Sereni and Oege de Moor. Static analysis of aspects. In AOSD, pages 30–39,
2003.

[125] C. Sibertin-Blanc. Cooperative objects : Principles, use and implementation. In Concur-
rent Object Oriented Programming and Petri Nets, volume 1973 of LNCS, pages 216–246.
Springer-Verlag, 2001.

[126] S. Singh, J. Grundy, J. Hosking, and J. Sun. An architecture for developing aspect-
oriented web services. In Proceedings of the third European Conference on Web Services
(ECOWS), pages 72–82. IEEE Computer Society, 2005.

[127] Simple Object Access Protocol v1.2. http://www.w3.org/TR/2003/
REC-soap12-part0-20030624/, 2003.

[128] SpringSource home page. http://www.springsource.org.

[129] Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Web service composi-
tion approaches: From industrial standards to formal methods. In Second International
Conference on Internet and Web Applications and Services (ICIW’07), page 15. IEEE
Computer Society, 2007.

[130] The World Wide Web Consortium. Web Service Choreography Interface, 2002. Version
1.0, http://www.w3.org/TR/wsci/.

[131] UDDI. Introduction to UDDI: Important Features and Functional Concepts. http://
uddi.org/pubs/uddi-tech-wp.pdf, 2004.

[132] Hugo Torres Vieira, Luı́s Caires, and João Costa Seco. The conversation calculus: A
model of service-oriented computation. In Sophia Drossopoulou, editor, Programming
Languages and Systems, 17th European Symposium on Programming, ESOP 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, Proceed-
ings, volume 4960 of Lecture Notes in Computer Science, pages 269–283. Springer, 2008.

[133] Robert J. Walker and Kevin Viggers. Implementing protocols via declarative event pat-
terns. In Proceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE-12), pages 159 – 169. ACM Press, 2004.

[134] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice and
dynamic join points in aspect-oriented programming. ACM Trans. Program. Lang. Syst.,
26(5):890–910, 2004.

67

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/wsci/
http://uddi.org/pubs/uddi-tech-wp.pdf
http://uddi.org/pubs/uddi-tech-wp.pdf

[135] Dave Winner. XML-RPC specifications. http://www.xmlrpc.com/spec, 1999.

[136] World Wide Web Consortium. Web Services Choreography Description Language Version
1.0. http://www.w3.org/TR/ws-cdl-10/, 2005.

[137] Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primitives and type dis-
cipline for structured communication-based programming revisited: Two systems for
higher-order session communication. Electr. Notes Theor. Comput. Sci, 171(4):73–93,
2007.

[138] Michael zur Muehlen, Jeffrey V. Nickerson, and Keith D. Swenson. Developing web
services choreography standards - the case of REST vs. SOAP. Decision Support Systems,
40(1):9–29, 2005.

68

http://www.xmlrpc.com/spec
http://www.w3.org/TR/ws-cdl-10/

	Introduction
	Service and aspect models
	Service model
	Overall architecture and main concepts
	Collaborations
	Processes
	Services
	Glossary

	Aspect model
	The basic model: an extension of the pointcut-advice model
	Fundamental characteristics of the CESSA aspect model
	Glossary

	From use case scenarios to requirements
	Loan negotiation scenario
	Introduction
	Assessing the loan risk using a Credit Bureau
	Government aid checking
	Assessing the loan risk using an internal information
	Evolution

	Methodology
	Requirements derived by the industrial partners
	Large-scale business infrastructures
	Infrastructures for embedded devices

	State of the Art: academic approaches
	Service-oriented computing
	Interaction protocols
	Aspect-oriented software development
	Aspects and (web) services
	History-based aspects
	Formal semantics for and properties of aspect-based systems
	Aspect-based evolution of protocols

	State of the Art: industrial approaches
	The WS* stack
	Integration Layer
	Quality of Service Layer
	Discovery, Registry, and Publishing Layer
	Description Layer
	Messaging and Transport Layer

	Alternative: Restful web services
	Cloud computing
	Software as a Service (SaaS)
	Platform as a Service (PaaS)
	Infrastructure as a Service (IaaS)

	Infrastructures and standards of the CESSA industrial partners
	Challenges for service-based business applications
	Business ByDesign, Netweaver

	Conclusion
	Bibliography

